Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma

Abstract

Classical Hodgkin lymphoma and primary mediastinal B cell lymphoma (PMBCL) are related lymphomas sharing pathological, molecular and clinical characteristics. Here we discovered by whole-genome and whole-transcriptome sequencing recurrent somatic coding-sequence mutations in the PTPN1 gene. Mutations were found in 6 of 30 (20%) Hodgkin lymphoma cases, in 6 of 9 (67%) Hodgkin lymphoma–derived cell lines, in 17 of 77 (22%) PMBCL cases and in 1 of 3 (33%) PMBCL-derived cell lines, consisting of nonsense, missense and frameshift mutations. We demonstrate that PTPN1 mutations lead to reduced phosphatase activity and increased phosphorylation of JAK-STAT pathway members. Moreover, silencing of PTPN1 by RNA interference in Hodgkin lymphoma cell line KM-H2 resulted in hyperphosphorylation and overexpression of downstream oncogenic targets. Our data establish PTPN1 mutations as new drivers in lymphomagenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Results from whole-genome sequencing of two PMBCL tumors and germline DNA.
Figure 2: Locations of PTPN1 mutations in Hodgkin lymphoma and PMBCL.
Figure 3: Immunohistochemical analysis of PTP1B expression in lymph node biopsy samples from Hodgkin lymphoma (n = 215) and PMBCL (n = 143).
Figure 4: Expression of PTP1B mutants in HEK 293–STAT6 cells.
Figure 5: Activation of JAK-STAT in a PTPN1-silenced Hodgkin lymphoma cell line (KM-H2).

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

NCBI Reference Sequence

References

  1. Steidl, C., Connors, J.M. & Gascoyne, R.D. Molecular pathogenesis of Hodgkin's lymphoma: increasing evidence of the importance of the microenvironment. J. Clin. Oncol. 29, 1812–1826 (2011).

    CAS  PubMed  Google Scholar 

  2. Johnson, P.W. & Davies, A.J. Primary mediastinal B-cell lymphoma. Hematology (Am Soc Hematol Educ Program) 2008, 349–358 (2008).

    Google Scholar 

  3. Oschlies, I. et al. Clinical, pathological and genetic features of primary mediastinal large B-cell lymphomas and mediastinal gray zone lymphomas in children. Haematologica 96, 262–268 (2011).

    PubMed  Google Scholar 

  4. Rieger, M. et al. Primary mediastinal B-cell lymphoma treated with CHOP-like chemotherapy with or without rituximab: results of the Mabthera International Trial Group study. Ann. Oncol. 22, 664–670 (2011).

    CAS  PubMed  Google Scholar 

  5. Dunleavy, K. et al. Dose-adjusted EPOCH-rituximab therapy in primary mediastinal B-cell lymphoma. N. Engl. J. Med. 368, 1408–1416 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kimm, L.R. et al. Frequent occurrence of deletions in primary mediastinal B-cell lymphoma. Genes Chromosom. Cancer 46, 1090–1097 (2007).

    CAS  PubMed  Google Scholar 

  7. Savage, K.J. Primary mediastinal large B-cell lymphoma. Oncologist 11, 488–495 (2006).

    CAS  PubMed  Google Scholar 

  8. Skinnider, B.F. et al. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 99, 618–626 (2002).

    CAS  PubMed  Google Scholar 

  9. Guiter, C. et al. Constitutive STAT6 activation in primary mediastinal large B-cell lymphoma. Blood 104, 543–549 (2004).

    CAS  PubMed  Google Scholar 

  10. Kube, D. et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood 98, 762–770 (2001).

    CAS  PubMed  Google Scholar 

  11. Scheeren, F.A. et al. IL-21 is expressed in Hodgkin lymphoma and activates STAT5: evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood 111, 4706–4715 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Steidl, C. & Gascoyne, R.D. The molecular pathogenesis of primary mediastinal large B-cell lymphoma. Blood 118, 2659–2669 (2011).

    Google Scholar 

  13. Ding, L. et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 481, 506–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Morin, R.D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Shah, S.P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).

    CAS  PubMed  Google Scholar 

  16. Steidl, C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shah, S.P. et al. Mutation of FOXL2 in granulosa-cell tumors of the ovary. N. Engl. J. Med. 360, 2719–2729 (2009).

    CAS  PubMed  Google Scholar 

  18. Tiacci, E. et al. BRAF mutations in hairy-cell leukemia. N. Engl. J. Med. 364, 2305–2315 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Dubé, N. & Tremblay, M.L. Beyond the metabolic function of PTP1B. Cell Cycle 3, 550–553 (2004).

    PubMed  Google Scholar 

  20. Yip, S.C., Saha, S. & Chernoff, J. PTP1B: a double agent in metabolism and oncogenesis. Trends Biochem. Sci. 35, 442–449 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pasqualucci, L. et al. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. USA 95, 11816–11821 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Popov, S.W. et al. Target sequence accessibility limits activation-induced cytidine deaminase activity in primary mediastinal B-cell lymphoma. Cancer Res. 67, 6555–6564 (2007).

    CAS  PubMed  Google Scholar 

  23. Ritz, O. et al. Recurrent mutations of the STAT6 DNA binding domain in primary mediastinal B-cell lymphoma. Blood 114, 1236–1242 (2009).

    CAS  PubMed  Google Scholar 

  24. Melzner, I. et al. Biallelic mutation of SOCS-1 impairs JAK2 degradation and sustains phospho-JAK2 action in the MedB-1 mediastinal lymphoma line. Blood 105, 2535–2542 (2005).

    CAS  PubMed  Google Scholar 

  25. Mottok, A. et al. Inactivating SOCS1 mutations are caused by aberrant somatic hypermutation and restricted to a subset of B-cell lymphoma entities. Blood 114, 4503–4506 (2009).

    CAS  PubMed  Google Scholar 

  26. Ritz, O. et al. STAT6 activity is regulated by SOCS-1 and modulates BCL-XL expression in primary mediastinal B-cell lymphoma. Leukemia 22, 2106–2110 (2008).

    CAS  PubMed  Google Scholar 

  27. Weniger, M.A. et al. Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25, 2679–2684 (2006).

    CAS  PubMed  Google Scholar 

  28. Lu, X. et al. PTP1B is a negative regulator of interleukin 4–induced STAT6 signaling. Blood 112, 4098–4108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ding, B.B. et al. Constitutively activated STAT3 promotes cell proliferation and survival in the activated B-cell subtype of diffuse large B-cell lymphomas. Blood 111, 1515–1523 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Dauer, D.J. et al. Stat3 regulates genes common to both wound healing and cancer. Oncogene 24, 3397–3408 (2005).

    CAS  PubMed  Google Scholar 

  31. Gottesman, M.M., Fojo, T. & Bates, S.E. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2, 48–58 (2002).

    CAS  PubMed  Google Scholar 

  32. Koyama, N. et al. Inhibition of phosphotyrosine phosphatase 1B causes resistance in BCR-ABL–positive leukemia cells to the ABL kinase inhibitor STI571. Clin. Cancer Res. 12, 2025–2031 (2006).

    CAS  PubMed  Google Scholar 

  33. Nanney, L.B., Davidson, M.K., Gates, R.E., Kano, M. & King, L.E. Jr. Altered distribution and expression of protein tyrosine phosphatases in normal human skin as compared to squamous cell carcinomas. J. Cutan. Pathol. 24, 521–532 (1997).

    CAS  PubMed  Google Scholar 

  34. Warabi, M., Nemoto, T., Ohashi, K., Kitagawa, M. & Hirokawa, K. Expression of protein tyrosine phosphatases and its significance in esophageal cancer. Exp. Mol. Pathol. 68, 187–195 (2000).

    CAS  PubMed  Google Scholar 

  35. Wiener, J.R. et al. Overexpression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. Am. J. Obstet. Gynecol. 170, 1177–1183 (1994).

    CAS  PubMed  Google Scholar 

  36. Zhai, Y.F. et al. Increased expression of specific protein tyrosine phosphatases in human breast epithelial cells neoplastically transformed by the neu oncogene. Cancer Res. 53, 2272–2278 (1993).

    CAS  PubMed  Google Scholar 

  37. Wiener, J.R. et al. Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: association with p185c-erbB-2 protein expression. J. Natl. Cancer Inst. 86, 372–378 (1994).

    CAS  PubMed  Google Scholar 

  38. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    CAS  PubMed  Google Scholar 

  39. Lim, W.A. & Pawson, T. Phosphotyrosine signaling: evolving a new cellular communication system. Cell 142, 661–667 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Kleppe, M. et al. Deletion of the protein tyrosine phosphatase gene PTPN2 in T-cell acute lymphoblastic leukemia. Nat. Genet. 42, 530–535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kleppe, M. et al. Mutation analysis of the tyrosine phosphatase PTPN2 in Hodgkin's lymphoma and T-cell non-Hodgkin's lymphoma. Haematologica 96, 1723–1727 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, T. et al. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell 144, 703–718 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    CAS  PubMed  Google Scholar 

  44. Ostman, A., Hellberg, C. & Bohmer, F.D. Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer 6, 307–320 (2006).

    PubMed  Google Scholar 

  45. Dubé, N. et al. Genetic ablation of protein tyrosine phosphatase 1B accelerates lymphomagenesis of p53-null mice through the regulation of B-cell development. Cancer Res. 65, 10088–10095 (2005).

    PubMed  Google Scholar 

  46. Mullighan, C.G. Genome sequencing of lymphoid malignancies. Blood 122, 3899–3907 (2013).

    CAS  PubMed  Google Scholar 

  47. Kimura, Y., Morita, S.Y., Matsuo, M. & Ueda, K. Mechanism of multidrug recognition by MDR1/ABCB1. Cancer Sci. 98, 1303–1310 (2007).

    CAS  PubMed  Google Scholar 

  48. Zhang, H. et al. Downregulation of gene MDR1 by shRNA to reverse multidrug-resistance of ovarian cancer A2780 cells. J. Cancer Res. Ther. 8, 226–231 (2012).

    CAS  PubMed  Google Scholar 

  49. Möller, P. et al. MedB-1, a human tumor cell line derived from a primary mediastinal large B-cell lymphoma. Int. J. Cancer 92, 348–353 (2001).

    PubMed  Google Scholar 

  50. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Roth, A. et al. JointSNVMix: a probabilistic model for accurate detection of somatic mutations in normal/tumour paired next-generation sequencing data. Bioinformatics 28, 907–913 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Ding, J. et al. Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data. Bioinformatics 28, 167–175 (2012).

    CAS  PubMed  Google Scholar 

  53. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6, 80–92 (2012).

    CAS  Google Scholar 

  54. McPherson, A. et al. nFuse: discovery of complex genomic rearrangements in cancer using high-throughput sequencing. Genome Res. 22, 2250–2261 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ha, G. et al. Integrative analysis of genome-wide loss of heterozygosity and monoallelic expression at nucleotide resolution reveals disrupted pathways in triple-negative breast cancer. Genome Res. 22, 1995–2007 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Langmead, B., Schatz, M.C., Lin, J., Pop, M. & Salzberg, S.L. Searching for SNPs with cloud computing. Genome Biol. 10, R134 (2009).

    PubMed  PubMed Central  Google Scholar 

  57. Wu, T.D. & Nacu, S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics 26, 873–881 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. McPherson, A. et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLOS Comput. Biol. 7, e1001138 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Goya, R. et al. SNVMix: predicting single nucleotide variants from next-generation sequencing of tumors. Bioinformatics 26, 730–736 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. van Beers, E.H. et al. A multiplex PCR predictor for aCGH success of FFPE samples. Br. J. Cancer 94, 333–337 (2006).

    CAS  PubMed  Google Scholar 

  61. van Dongen, J.J. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17, 2257–2317 (2003).

    CAS  PubMed  Google Scholar 

  62. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the BC Cancer Foundation and the Canada Foundation for Innovation for their support. We also thank T. Van Tol, M. Drake, R. Tong, the Genome Sciences Centre (GSC) production group and the Center for Translational and Applied Genomics (CTAG) for excellent technical support. This work is supported by a research grant from the Leukemia & Lymphoma Society of Canada (LLSC) and by a Terry Fox Research Institute team grant (1023) to C.S. and a Scholarship award from the Michael Smith Foundation for Health Research (MSFHR) to C.S. R.D.G. is supported by a Canadian Institutes of Health Research (CIHR) grant (178536) and a Terry Fox Foundation program project grant (019001). A.M. is supported by a fellowship award from the Mildred Scheel Cancer Foundation. R.K. is supported by fellowship awards from CIHR, MSFHR and the University of British Columbia.

Author information

Authors and Affiliations

Authors

Contributions

J.G. designed and performed the research, analyzed and interpreted data and wrote the manuscript. A.T., B.W., K.L.T., S.B.-N., A.M., M.B., R.K. and C.G. performed experiments and interpreted data. F.C.C., R.S.L. and S.R. analyzed data from whole-genome sequencing, RNA-seq and amplicon sequencing. C.H., K.L., L.M.R. and P.G. provided study material and interpreted results. K.J.S., M.A.M. and S.P.S. interpreted data. J.M.C. and R.D.G. curated the lymphoma database, interpreted data and reviewed the manuscript. C.S. designed the research, analyzed and interpreted data and wrote the manuscript.

Corresponding author

Correspondence to Christian Steidl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 PTP1B expression in PMBCL (n = 143) and in HL (n = 215) clinical specimens was analyzed by immunohistochemistry.

For PMBCL (a) and HL (b) cases with known PTPN1 mutational status, the percentage of positive tumor cells is shown. The overall distribution of PTP1B-positive tumor cells is shown in c,d.

Supplementary Figure 2 PTPN1 mutations and survival outcomes in PMBCL patients.

The Kaplan-Meier graphs show overall survival (a) and progression-free survival (b) in 77 PMBCL patients (60 PTPN1 WT and 17 mutated).

Supplementary Figure 3 PTPN1 mutations and survival outcomes in HL patients.

The Kaplan-Meier graphs show freedom from treatment failure (a) and disease-specific survival (b) in 30 HL patients (24 PTPN1 WT and 6 mutated).

Supplementary Figure 4 PTPN1 allelic imbalances in PMBCL and HL cell lines were analyzed by FISH.

The BAC clone for PTPN1 20q13.3 (CTD-2582P13) is labeled in spectrum orange, and the BAC clone for telomere 20p13 is labeled in spectrum green (control). Cell lines with normal PTPN1 copy numbers are not shown.

Supplementary Figure 5 PTP1B expression and PTPN1 transcript levels in PMBCL and HL cell lines were analyzed by protein blotting and qRT-PCR.

25 μg of extracted protein was incubated with anti-PTP1B. An EBV-transformed lymphoblastoid cell line (LCL) was used as a positive control, and an anti–β-actin antibody was used as a loading control. A representative experiment is shown (a). 5 ng of extracted RNA was used to detect PTPN1 mRNA using TaqMan gene expression assay probes. GAPDH was run as an internal control. Each sample was run in triplicate. Error bars represent s.d. (b).

Supplementary Figure 6 Determination of the allelic configuration in MedB-1.

cDNA from MedB-1 was cloned into a vector (pCR 2.1 TOPO TA cloning, Invitrogen). Sanger sequencing of subclones revealed PTPN1 mutations in a trans-allelic configuration. All clones screened had mutations in either exon 5 or 8.

Supplementary Figure 7 Gene set enrichment analysis.

Differentially expressed genes in PTPN1-silenced cells were analysed using GSEA software and the Molecular Signatures Database (Broad Institute).

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Tables 8, 10 and 11 (PDF 2297 kb)

Supplementary Tables

Supplementary Tables 1–7, 9, 12 and 13 (XLSX 710 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunawardana, J., Chan, F., Telenius, A. et al. Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat Genet 46, 329–335 (2014). https://doi.org/10.1038/ng.2900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2900

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing