Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Toll-like receptor–induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens

Abstract

Toll-like receptor (TLR) signaling in macrophages is required for antipathogen responses, including the biosynthesis of nitric oxide from arginine, and is essential for immunity to Mycobacterium tuberculosis, Toxoplasma gondii and other intracellular pathogens. Here we report a 'loophole' in the TLR pathway that is advantageous to these pathogens. Intracellular pathogens induced expression of the arginine hydrolytic enzyme arginase 1 (Arg1) in mouse macrophages through the TLR pathway. In contrast to diseases dominated by T helper type 2 responses in which Arg1 expression is greatly increased by interleukin 4 and 13 signaling through the transcription factor STAT6, TLR-mediated Arg1 induction was independent of the STAT6 pathway. Specific elimination of Arg1 in macrophages favored host survival during T. gondii infection and decreased lung bacterial load during tuberculosis infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Arg1 expression in in vitro mycobacterial infection is regulated by a STAT6-independent, Myd88-dependent pathway.
Figure 2: Central function for the MyD88-C/EBPβ pathway in M. bovis BCG–mediated Arg1 expression.
Figure 3: Specific deletion of Arg1 in macrophages results in higher NO production.
Figure 4: Arg1 deficiency in macrophages increases clearance of M. tuberculosis.
Figure 5: Nitrotyrosine staining of mycobacterial tissues.
Figure 6: Macrophage Arg1 is a susceptibility factor in experimental toxoplasmosis.

Similar content being viewed by others

References

  1. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  2. Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2, 907–916 (2001).

    Article  CAS  Google Scholar 

  3. Chan, J., Xing, Y., Magliozzo, R.S. & Bloom, B.R. Killing of virulent Mycobacterium tuberculosis by reactive nitrogen intermediates produced by activated murine macrophages. J. Exp. Med. 175, 1111–1122 (1992).

    Article  CAS  Google Scholar 

  4. Thoma-Uszynski, S. et al. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291, 1544–1547 (2001).

    Article  CAS  Google Scholar 

  5. Brightbill, H.D. et al. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285, 732–736 (1999).

    Article  CAS  Google Scholar 

  6. Poole, R.K. Nitric oxide and nitrosative stress tolerance in bacteria. Biochem. Soc. Trans. 33, 176–180 (2005).

    Article  CAS  Google Scholar 

  7. Gobert, A.P. et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl. Acad. Sci. USA 98, 13844–13849 (2001).

    Article  CAS  Google Scholar 

  8. Gaur, U. et al. An effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. J. Immunol. 179, 8446–8453 (2007).

    Article  CAS  Google Scholar 

  9. Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003).

    Article  CAS  Google Scholar 

  10. Davis, A.S. et al. Mechanism of inducible nitric oxide synthase exclusion from mycobacterial phagosomes. PLoS Pathog. 3, e186 (2007).

    Article  Google Scholar 

  11. Talaue, M.T. et al. Arginine homeostasis in J774.1 macrophages in the context of Mycobacterium bovis BCG infection. J. Bacteriol. 188, 4830–4840 (2006).

    Article  CAS  Google Scholar 

  12. Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nat. Rev. Immunol. 5, 641–654 (2005).

    Article  CAS  Google Scholar 

  13. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  Google Scholar 

  14. Anthony, R.M., Rutitzky, L.I., Urban, J.F., Jr, Stadecker, M.J. & Gause, W.C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 7, 975–987 (2007).

    Article  CAS  Google Scholar 

  15. Wynn, T.A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  Google Scholar 

  16. Kim, E.Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nat. Med. 14, 633–640 (2008).

    Article  CAS  Google Scholar 

  17. Rutschman, R. et al. Cutting edge: STAT6-dependent substrate depletion regulates nitric oxide production. J. Immunol. 166, 2173–2177 (2001).

    Article  CAS  Google Scholar 

  18. Park, J.H. et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 178, 2380–2386 (2007).

    Article  CAS  Google Scholar 

  19. Reiling, N. et al. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J. Immunol. 169, 3480–3484 (2002).

    Article  CAS  Google Scholar 

  20. Gray, M.J., Poljakovic, M., Kepka-Lenhart, D. & Morris, S.M., Jr. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gene 353, 98–106 (2005).

    Article  CAS  Google Scholar 

  21. Pauleau, A.L. et al. Enhancer-mediated control of macrophage-specific arginase I expression. J. Immunol. 172, 7565–7573 (2004).

    Article  CAS  Google Scholar 

  22. Vats, D. et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 4, 13–24 (2006).

    Article  CAS  Google Scholar 

  23. Bussiere, F.I. et al. Spermine causes loss of innate immune response to Helicobacter pylori by inhibition of inducible nitric-oxide synthase translation. J. Biol. Chem. 280, 2409–2412 (2005).

    Article  CAS  Google Scholar 

  24. Gobert, A.P. et al. Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J. Immunol. 168, 4692–4700 (2002).

    Article  CAS  Google Scholar 

  25. Zhou, L. et al. An inducible enhancer required for Il12b promoter activity in an insulated chromatin environment. Mol. Cell. Biol. 27, 2698–2712 (2007).

    Article  CAS  Google Scholar 

  26. Albina, J.E. et al. Macrophage arginase regulation by CCAAT/enhancer-binding protein beta. Shock 23, 168–172 (2005).

    Article  CAS  Google Scholar 

  27. Iyer, R.K. et al. Mouse model for human arginase deficiency. Mol. Cell. Biol. 22, 4491–4498 (2002).

    Article  CAS  Google Scholar 

  28. Modolell, M., Corraliza, I.M., Link, F., Soler, G. & Eichmann, K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur. J. Immunol. 25, 1101–1104 (1995).

    Article  CAS  Google Scholar 

  29. Zea, A.H. et al. Decreased expression of CD3zeta and nuclear transcription factor kappa B in patients with pulmonary tuberculosis: potential mechanisms and reversibility with treatment. J. Infect. Dis. 194, 1385–1393 (2006).

    Article  CAS  Google Scholar 

  30. Choi, H.S., Rai, P.R., Chu, H.W., Cool, C. & Chan, E.D. Analysis of nitric oxide synthase and nitrotyrosine expression in human pulmonary tuberculosis. Am. J. Respir. Crit. Care Med. 166, 178–186 (2002).

    Article  Google Scholar 

  31. Scharton-Kersten, T.M., Yap, G., Magram, J. & Sher, A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J. Exp. Med. 185, 1261–1273 (1997).

    Article  CAS  Google Scholar 

  32. Schluter, D. et al. Inhibition of inducible nitric oxide synthase exacerbates chronic cerebral toxoplasmosis in Toxoplasma gondii-susceptible C57BL/6 mice but does not reactivate the latent disease in T. gondii-resistant BALB/c mice. J. Immunol. 162, 3512–3518 (1999).

    CAS  PubMed  Google Scholar 

  33. Saeij, J.P. et al. Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 445, 324–327 (2007).

    Article  CAS  Google Scholar 

  34. Kerr, A.R., Wei, X.Q., Andrew, P.W. & Mitchell, T.J. Nitric oxide exerts distinct effects in local and systemic infections with Streptococcus pneumoniae. Microb. Pathog. 36, 303–310 (2004).

    Article  CAS  Google Scholar 

  35. Sonoki, T. et al. Coinduction of nitric-oxide synthase and arginase I in cultured rat peritoneal macrophages and rat tissues in vivo by lipopolysaccharide. J. Biol. Chem. 272, 3689–3693 (1997).

    Article  CAS  Google Scholar 

  36. Karaghiosoff, M. et al. Central role for type I interferons and Tyk2 in lipopolysaccharide-induced endotoxin shock. Nat. Immunol. 4, 471–477 (2003).

    Article  CAS  Google Scholar 

  37. Munder, M., Eichmann, K. & Modolell, M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160, 5347–5354 (1998).

    CAS  PubMed  Google Scholar 

  38. Munder, M. et al. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J. Immunol. 163, 3771–3777 (1999).

    CAS  PubMed  Google Scholar 

  39. El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M. & Bogdan, C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171, 4561–4568 (2003).

    Article  CAS  Google Scholar 

  40. Di Costanzo, L. et al. Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response. Proc. Natl. Acad. Sci. USA 102, 13058–13063 (2005).

    Article  CAS  Google Scholar 

  41. Wanasen, N. & Soong, L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol. Res. 41, 15–25 (2008).

    Article  CAS  Google Scholar 

  42. Grode, L. et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Calmette-Guerin mutants that secrete listeriolysin. J. Clin. Invest. 115, 2472–2479 (2005).

    Article  CAS  Google Scholar 

  43. Murray, P.J. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).

    Article  CAS  Google Scholar 

  44. Ryan, J.L., Yohe, W.B. & Morrison, D.C. Stimulation of peritoneal cell arginase by bacterial lipopolysaccharides. Am. J. Pathol. 99, 451–462 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Igietseme, J.U. et al. Chlamydial infection in inducible nitric oxide synthase knockout mice. Infect. Immun. 66, 1282–1286 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Rodriguez, N. et al. MyD88-dependent changes in the pulmonary transcriptome after infection with Chlamydia pneumoniae. Physiol Genomics 30, 134–145 (2007).

    Article  CAS  Google Scholar 

  47. Lang, R. et al. SOCS3 regulates the plasticity of gp130 signaling. Nat. Immunol. 4, 546–550 (2003).

    Article  CAS  Google Scholar 

  48. Gingras, S., Parganas, E., de Pauw, A., Ihle, J.N. & Murray, P.J. Re-examination of the role of suppressor of cytokine signaling 1 (SOCS1) in the regulation of toll-like receptor signaling. J. Biol. Chem. 279, 54702–54707 (2004).

    Article  CAS  Google Scholar 

  49. Orihuela, C.J., Gao, G., Francis, K.P., Yu, J. & Tuomanen, E.I. Tissue-specific contributions of pneumococcal virulence factors to pathogenesis. J. Infect. Dis. 190, 1661–1669 (2004).

    Article  CAS  Google Scholar 

  50. Cooper, A.M., Pearl, J.E., Brooks, J.V., Ehlers, S. & Orme, I.M. Expression of the nitric oxide synthase 2 gene is not essential for early control of Mycobacterium tuberculosis in the murine lung. Infect. Immun. 68, 6879–6882 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Förster (Technical University of Munich) for the LysMcre mice; M. Yanagisawa (University of Texas Southwestern) for the Tie2cre mice; P. Ney (St. Jude Children's Research Hospital) for the CMV-cre mice; D. Green (St. Jude Children's Research Hospital) and S. Akira (Osaka University) for the MyD88-deficient mice; S. Morris (University of Pittsburgh) for the antibodies to Arg1; C. Nathan (Weill Medical School of Cornell University) for the antibody to iNOS; S. Smale (University of California, Los Angeles) for the insulated reporter constructs; D. Bush for nitrotyrosine staining of BCG-infected livers; Xenogen for construction of luciferase-bearing pneumococci; Ozgene for microinjection of the targeted Bruce4 cells into C57BL/6 blastocysts and chimera generation; A. DeFreitas for technical assistance; B. Schulman for discussions and generation of Supplementary Figure 6b; and M. Koyanagi and M. Bix for discussion and preliminary infection experiments. Supported by the Sandler Program for Asthma Research (P.J.M.), the National Institutes of Health (AI062921 to P.J.M.; AI27913 to E.I.T.; AI66046 to G.K.; CORE grant P30 CA21765 and the NIAID intramural research program to T.A.W.), the German Research Foundation (SFB620 project A9 to C.B. and U.S.) and the American Lebanese Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Contributions

K.C.E.K., J.E.Q. and A.M.S. did most of the experiments. J.T.P. and R.W.T. did the T. gondii experiments. M.H.-T., R.J.B., T.K., U.S., M.-S.K., G.K., E.I.T., I.M.O. and C.B. did the infection and biochemistry experiments. K.A.F. and T.-D.K. contributed key research reagents. P.J.M. created the Arg1 conditional knockout. P.J.M. and A.M.S. bred and backcrossed the mice. T.A.W. and P.J.M. conceived and designed the project and wrote the manuscript.

Corresponding authors

Correspondence to Thomas A Wynn or Peter J Murray.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 and Supplementary Methods (PDF 2362 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Kasmi, K., Qualls, J., Pesce, J. et al. Toll-like receptor–induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat Immunol 9, 1399–1406 (2008). https://doi.org/10.1038/ni.1671

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1671

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing