Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD98hc facilitates B cell proliferation and adaptive humoral immunity

Abstract

The proliferation of antigen-specific lymphocytes and resulting clonal expansion are essential for adaptive immunity. We report here that B cell–specific deletion of the heavy chain of CD98 (CD98hc) resulted in lower antibody responses due to total suppression of B cell proliferation and subsequent plasma cell formation. Deletion of CD98hc did not impair early B cell activation but did inhibit later activation of the mitogen-activated protein kinase Erk1/2 and downregulation of the cell cycle inhibitor p27. Reconstitution of CD98hc-deficient B cells with CD98hc mutants showed that the integrin-binding domain of CD98hc was required for B cell proliferation but that the amino acid–transport function of CD98hc was dispensable for this. Thus, CD98hc supports integrin-dependent rapid proliferation of B cells. We propose that the advantage of adaptive immunity favored the appearance of CD98hc in vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deletion of CD98hc in Slc3a2f/fCD19-Cre+ mice.
Figure 2: Impaired antibody responses in Slc3a2f/fCD19-Cre+ mice.
Figure 3: Normal B cell distribution and natural antibody concentrations in Slc3a2f/fCD19-Cre+ mice.
Figure 4: Defective formation of plasma cells in Slc3a2f/fCD19-Cre+ mice.
Figure 5: Proliferation of splenic B cells from Slc3a2f/fCD19-Cre+ mice.
Figure 6: Mechanism by which CD98hc enables B cell proliferation.
Figure 7: Integrin signaling defects in B cells lacking CD98hc.
Figure 8: Selection for CD98hc+ B cells during activation.

Similar content being viewed by others

References

  1. Burnet, F.M. The Clonal Selection Theory of Acquired Immunity 49–68 (Cambridge University Press, Cambridge, 1959).

    Google Scholar 

  2. Cooper, M.D. & Alder, M.N. The evolution of adaptive immune systems. Cell 124, 815–822 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Kehrl, J.H. & Fauci, A.S. Identification, purification, and characterization of antigen-activated and antigen-specific human B lymphocytes. Trans. Assoc. Am. Physicians 96, 182–187 (1983).

    CAS  PubMed  Google Scholar 

  4. Bertran, J. et al. Stimulation of system y+-like amino acid transport by the heavy chain of human 4F2 surface antigen in Xenopus laevis oocytes. Proc. Natl. Acad. Sci. USA 89, 5606–5610 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Torrents, D. et al. Identification and characterization of a membrane protein (y+L amino acid transporter-1) that associates with 4F2hc to encode the amino acid transport activity y+L. A candidate gene for lysinuric protein intolerance. J. Biol. Chem. 273, 32437–32445 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Fenczik, C.A., Sethi, T., Ramos, J.W., Hughes, P.E. & Ginsberg, M.H. Complementation of dominant suppression implicates CD98 in integrin activation. Nature 390, 81–85 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Feral, C.C. et al. CD98hc (SLC3A2) mediates integrin signaling. Proc. Natl. Acad. Sci. USA 102, 355–360 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Abraham, R.T. Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling. Curr. Opin. Immunol. 10, 330–336 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Mondino, A. & Mueller, D.L. mTOR at the crossroads of T cell proliferation and tolerance. Semin. Immunol. 19, 162–172 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Uinuk-Ool, T. et al. Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc. Natl. Acad. Sci. USA 99, 14356–14361 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsumura, H. et al. The targeted disruption of the CD98 gene results in embryonic lethality. Biochem. Biophys. Res. Commun. 308, 847–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Feral, C.C. et al. CD98hc (SLC3A2) participates in fibronectin matrix assembly by mediating integrin signaling. J. Cell Biol. 178, 701–711 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Otero, D.C. & Rickert, R.C. CD19 function in early and late B cell development. II. CD19 facilitates the pro-B/pre-B transition. J. Immunol. 171, 5921–5930 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Brakebusch, C. et al. Beta1 integrin is not essential for hematopoiesis but is necessary for the T cell-dependent IgM antibody response. Immunity 16, 465–477 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Lu, T.T. & Cyster, J.G. Integrin-mediated long-term B cell retention in the splenic marginal zone. Science 297, 409–412 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Fenczik, C.A. et al. Distinct domains of CD98hc regulate integrins and amino acid transport. J. Biol. Chem. 276, 8746–8752 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Tangye, S.G. & Hodgkin, P.D. Divide and conquer: the importance of cell division in regulating B-cell responses. Immunology 112, 509–520 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hasbold, J., Corcoran, L.M., Tarlinton, D.M., Tangye, S.G. & Hodgkin, P.D. Evidence from the generation of immunoglobulin G–secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nat. Immunol. 5, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Freidman, A.W., Diaz, L.A., Jr., Moore, S., Schaller, J. & Fox, D.A. The human 4F2 antigen: evidence for cryptic and noncryptic epitopes and for a role of 4F2 in human T lymphocyte activation. Cell. Immunol. 154, 253–263 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Diaz, L.A., Jr. et al. Monocyte-dependent regulation of T lymphocyte activation through CD98. Int. Immunol. 9, 1221–1231 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Fernandez-Herrera, J., Sanchez-Madrid, F. & Diez, A.G. Differential expression of the 4F2 activation antigen on human follicular epithelium in hair cycle. J. Invest. Dermatol. 92, 247–250 (1989).

    Article  CAS  PubMed  Google Scholar 

  23. Zent, R. et al. Class- and splice variant-specific association of CD98 with integrin beta cytoplasmic domains. J. Biol. Chem. 275, 5059–5064 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Proud, C.G. Amino acids and mTOR signalling in anabolic function. Biochem. Soc. Trans. 35, 1187–1190 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Hynes, R.O. Integrins: bidirectional, allosteric signaling machines. Cell 110, 673–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Schwartz, M.A. & Assoian, R.K. Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J. Cell Sci. 114, 2553–2560 (2001).

    CAS  PubMed  Google Scholar 

  27. Motti, M.L. et al. Loss of p27 expression through RAS → BRAF → MAP kinase-dependent pathway in human thyroid carcinomas. Cell Cycle 6, 2817–2825 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Assoian, R.K. & Schwartz, M.A. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell-cycle progression. Curr. Opin. Genet. Dev. 11, 48–53 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Walker, J.L. & Assoian, R.K. Integrin-dependent signal transduction regulating cyclin D1 expression and G1 phase cell cycle progression. Cancer Metastasis Rev. 24, 383–393 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, K.B. et al. The rap GTPases regulate B cell morphology, immune-synapse formation, and signaling by particulate B cell receptor ligands. Immunity 28, 75–87 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Arana, E. et al. Activation of the small GTPase Rac2 via the B cell receptor regulates B cell adhesion and immunological-synapse formation. Immunity 28, 88–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Lammermann, T. et al. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008).

    Article  PubMed  Google Scholar 

  33. Wolniak, K.L., Shinall, S.M. & Waldschmidt, T.J. The germinal center response. Crit. Rev. Immunol. 24, 39–65 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Warren, A.P. et al. Convergence between CD98 and integrin-mediated T-lymphocyte co-stimulation. Immunology 99, 62–68 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shimizu, Y., Rose, D.M. & Ginsberg, M.H. Integrins in the immune system. Adv. Immunol. 72, 325–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Sims, T.N. & Dustin, M.L. The immunological synapse: integrins take the stage. Immunol. Rev. 186, 100–117 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Cyster, J.G. Homing of antibody secreting cells. Immunol. Rev. 194, 48–60 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Lo, C.G., Lu, T.T. & Cyster, J.G. Integrin-dependence of lymphocyte entry into the splenic white pulp. J. Exp. Med. 197, 353–361 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rose, D.M., Alon, R. & Ginsberg, M.H. Integrin modulation and signaling in leukocyte adhesion and migration. Immunol. Rev. 218, 126–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Abram, C.L. & Lowell, C.A. Convergence of immunoreceptor and integrin signaling. Immunol. Rev. 218, 29–44 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Batista, F.D. et al. The role of integrins and coreceptors in refining thresholds for B-cell responses. Immunol. Rev. 218, 197–213 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Roovers, K., Davey, G., Zhu, X., Bottazzi, M.E. & Assoian, R.K. Alpha5beta1 integrin controls cyclin D1 expression by sustaining mitogen-activated protein kinase activity in growth factor-treated cells. Mol. Biol. Cell 10, 3197–3204 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fleire, S.J. et al. B cell ligand discrimination through a spreading and contraction response. Science 312, 738–741 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Prager, G.W., Feral, C.C., Kim, C., Han, J. & Ginsberg, M. H. CD98hc (SLC3a2) interaction with the integrin β subunit cytoplasmic domain mediates adhesive signaling. J. Biol. Chem. 282, 24477–24484 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Esteban, F. et al. Relationship of 4F2 antigen with local growth and metastatic potential of squamous cell carcinoma of the larynx. Cancer 66, 1493–1498 (1990).

    Article  CAS  PubMed  Google Scholar 

  46. Hara, K., Kudoh, H., Enomoto, T., Hashimoto, Y. & Masuko, T. Malignant transformation of NIH3T3 cells by overexpression of early lymphocyte activation antigen CD98. Biochem. Biophys. Res. Commun. 262, 720–725 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Henderson, N.C. et al. CD98hc (SLC3A2) interaction with β1 integrins is required for transformation. J. Biol. Chem. 279, 54731–54741 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. White, D.E. et al. Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6, 159–170 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Kass, L., Erler, J.T., Dembo, M. & Weaver, V.M. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int. J. Biochem. Cell Biol. 39, 1987–1994 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Van Parijs, L. et al. Uncoupling IL-2 signals that regulate T cell proliferation, survival, and Fas-mediated activation-induced cell death. Immunity 11, 281–288 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Slepak for technical assistance; D. Rose for advice on analyzing antibody responses; M. Cato for advice and protocols for enzyme-linked immunospot assays; and R. Zent (Vanderbilt University) for Slc3a2+/− mice. Supported by the National Institutes of Health (AR27214, HL31950 and HL0780784), the Arthritis Foundation (C.C.F.) and the National Multiple Sclerosis Society (FG1802-A-1 to J.C.).

Author information

Authors and Affiliations

Authors

Contributions

M.H.G., J.C. and C.C.F. conceived the project with advice and collaboration from R.C.R.; J.C. and M.H.G. wrote the manuscript with editorial input from R.C.R. and C.C.F.; R.C.R. provided CD19-Cre mice; J.C. did experiments except as follows: C.D.B. did immunohistochemical analysis of spleen sections and flow cytometry for B cell subsets, and R.R. tested B cell proliferation in pan integrin-deficient mice.

Corresponding authors

Correspondence to Robert C Rickert or Mark H Ginsberg.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Methods (PDF 699 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cantor, J., Browne, C., Ruppert, R. et al. CD98hc facilitates B cell proliferation and adaptive humoral immunity. Nat Immunol 10, 412–419 (2009). https://doi.org/10.1038/ni.1712

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1712

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing