Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection

Abstract

T cell exhaustion has a major role in failure to control chronic infection. High expression of inhibitory receptors, including PD-1, and the inability to sustain functional T cell responses contribute to exhaustion. However, the transcriptional control of these processes remains unclear. Here we demonstrate that the transcription factor T-bet regulated the exhaustion of CD8+ T cells and the expression of inhibitory receptors. T-bet directly repressed transcription of the gene encoding PD-1 and resulted in lower expression of other inhibitory receptors. Although a greater abundance of T-bet promoted terminal differentiation after acute infection, high T-bet expression sustained exhausted CD8+ T cells and repressed the expression of inhibitory receptors during chronic viral infection. Persistent antigenic stimulation caused downregulation of T-bet, which resulted in more severe exhaustion of CD8+ T cells. Our observations suggest therapeutic opportunities involving higher T-bet expression during chronic infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Downregulation of T-bet during chronic relative to its expression during acute LCMV infection.
Figure 2: Ablation of T-bet results in loss of antigen-specific CD8+ T cells and impairs viral control during chronic infection.
Figure 3: Ablation of T-bet impairs the function of antigen-specific CD8+ T cells later but not early during chronic infection.
Figure 4: Inverse correlation of the expression of T-bet and PD-1 during chronic infection.
Figure 5: Downregulation of T-bet during chronic infection is due to persistent antigen.
Figure 6: Cell-intrinsic role for T-bet in the repression of PD-1, demonstrated by peripheral chimeras and mixed transfer of P14 cells.
Figure 7: T-bet overexpression downregulates PD-1 expression and improves the durability of exhausted antigen-specific CD8+ T cells.
Figure 8: T-bet regulates the expression of many cell-surface inhibitory receptors during chronic infection.
Figure 9: T-bet is a direct transcriptional repressor of the Pdcd1.

Similar content being viewed by others

References

  1. Williams, M.A. & Bevan, M.J. Effector and memory CTL differentiation. Annu. Rev. Immunol. 25, 171–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Virgin, H.W., Wherry, E.J. & Ahmed, R. Redefining chronic viral infection. Cell 138, 30–50 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Wherry, E.J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Fourcade, J. et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J. Exp. Med. 207, 2175–2186 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sakuishi, K. et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J. Exp. Med. 27, 2187–2194 (2010).

    Article  Google Scholar 

  7. Brahmer, J.R. et al. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J. Clin. Oncol. 28, 3167–3175 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Blackburn, S.D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Jones, R.B. et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J. Exp. Med. 205, 2763–2779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jin, H.T. et al. Cooperation of Tim-3 and PD-1 in CD8 T-cell exhaustion during chronic viral infection. Proc. Natl. Acad. Sci. USA 107, 14733–14738 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vali, B. et al. HCV-specific T cells in HCV/HIV co-infection show elevated frequencies of dual Tim-3/PD-1 expression that correlate with liver disease progression. Eur. J. Immunol. 40, 2493–2505 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Rutishauser, R.L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Joshi, N.S. et al. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Intlekofer, A.M. et al. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J. Exp. Med. 204, 2015–2021 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Intlekofer, A.M. et al. Anomalous type 17 response to viral infection by CD8+ T cells lacking T-bet and eomesodermin. Science 321, 408–411 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schulz, E.G., Mariani, L., Radbruch, A. & Hofer, T. Sequential polarization and imprinting of type 1 T helper lymphocytes by interferon-γ and interleukin-12. Immunity 30, 673–683 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Shin, H., Blackburn, S.D., Blattman, J.N. & Wherry, E.J. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J. Exp. Med. 204, 941–949 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anderson, A.C. et al. T-bet, a Th1 transcription factor regulates the expression of Tim-3. Eur. J. Immunol. 40, 859–866 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Oestreich, K.J., Yoon, H., Ahmed, R. & Boss, J.M. NFATc1 regulates PD-1 expression upon T cell activation. J. Immunol. 181, 4832–4839 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Beima, K.M. et al. T-bet binding to newly identified target gene promoters is cell type-independent but results in variable context-dependent functional effects. J. Biol. Chem. 281, 11992–12000 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Miller, S.A., Huang, A.C., Miazgowicz, M.M., Brassil, M.M. & Weinmann, A.S. Coordinated but physically separable interaction with H3K27-demethylase and H3K4-methyltransferase activities are required for T-box protein-mediated activation of developmental gene expression. Genes Dev. 22, 2980–2993 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mehta, D.S., Wurster, A.L., Weinmann, A.S. & Grusby, M.J. NFATc2 and T-bet contribute to T-helper-cell-subset-specific regulation of IL-21 expression. Proc. Natl. Acad. Sci. USA 102, 2016–2021 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Crotty, S., Johnston, R.J. & Schoenberger, S.P. Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation. Nat. Immunol. 11, 114–120 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jenner, R.G. et al. The transcription factors T-bet and GATA-3 control alternative pathways of T-cell differentiation through a shared set of target genes. Proc. Natl. Acad. Sci. USA 106, 17876–17881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Petrovas, C. et al. Differential association of programmed death-1 and CD57 with ex vivo survival of CD8+ T cells in HIV infection. J. Immunol. 183, 1120–1132 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Louten, J., van Rooijen, N. & Biron, C.A. Type 1 IFN deficiency in the absence of normal splenic architecture during lymphocytic choriomeningitis virus infection. J. Immunol. 177, 3266–3272 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Mackerness, K.J. et al. Pronounced virus-dependent activation drives exhaustion but sustains IFN-γ transcript levels. J. Immunol. 185, 3643–3651 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen, K.B. et al. Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science 297, 2063–2066 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Hibbert, L., Pflanz, S., De Waal Malefyt, R. & Kastelein, R.A. IL-27 and IFN-α signal via Stat1 and Stat3 and induce T-bet and IL-12Rβ2 in naive T cells. J. Interferon Cytokine Res. 23, 513–522 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Intlekofer, A.M. et al. Effector and memory CD8+ T cell fate coupled by T-bet and eomesodermin. Nat. Immunol. 6, 1236–1244 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Ahmed, R., Salmi, A., Butler, L.D., Chiller, J.M. & Oldstone, M.B. Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice. Role in suppression of cytotoxic T lymphocyte response and viral persistence. J. Exp. Med. 160, 521–540 (1984).

    Article  CAS  PubMed  Google Scholar 

  36. Wherry, E.J., Blattman, J.N., Murali-Krishna, K., van der Most, R. & Ahmed, R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77, 4911–4927 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kotturi, M.F. et al. The CD8+ T-cell response to lymphocytic choriomeningitis virus involves the L antigen: uncovering new tricks for an old virus. J. Virol. 81, 4928–4940 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mullen, A.C. et al. Role of T-bet in commitment of TH1 cells before IL-12-dependent selection. Science 292, 1907–1910 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Pear, W.S., Nolan, G.P., Scott, M.L. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392–8396 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 206, 51–59 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank W. Pear (University of Pennsylvania) for human embryonic kidney 293T cells; members of the Wherry and Reiner laboratories as well as M.R. Betts for comments and insights; and N. Cereb, S.Y. Yang and L. Boring for assistance with construction of loxP-flanked Tbx21. Supported by the US National Institutes of Health (AI007518 to C.K.; AI071309, AI082630, AI083022, AI078897 and HHSN266200500030C to E.J.W.; and AI061699 and AI076458 to S.L.R.), the Foundation for the National Institutes of Health and Grand Challenge in Global Health (E.J.W.) and the Dana Foundation (E.J.W.).

Author information

Authors and Affiliations

Authors

Contributions

C.K. and E.J.W. designed the experiments and analyzed the data; K.J.O. did ChIP for CD4+ T cells and EL4 luciferase assays; A.C., J.M.A., M.A.P., M.-A.A., and A.M.I. assisted in doing and analyzing experiments; J.M.B., S.L.R. and A.S.W. assisted with the design of the experiments and provided constructs, reagents and mouse strains; and C.K. and E.J.W. wrote the manuscript.

Corresponding author

Correspondence to E John Wherry.

Ethics declarations

Competing interests

E.J.W. has a patent licensing agreement on the PD-1 pathway.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11 and Supplementary Table 1 (PDF 8537 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kao, C., Oestreich, K., Paley, M. et al. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol 12, 663–671 (2011). https://doi.org/10.1038/ni.2046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing