Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection

Abstract

Infection of erythrocytes with Plasmodium species induces clinical malaria. Parasite-specific CD4+ T cells correlate with lower parasite burdens and severity of human malaria and are needed to control blood-stage infection in mice. However, the characteristics of CD4+ T cells that determine protection or parasite persistence remain unknown. Here we show that infection of humans with Plasmodium falciparum resulted in higher expression of the inhibitory receptor PD-1 associated with T cell dysfunction. In vivo blockade of the PD-1 ligand PD-L1 and the inhibitory receptor LAG-3 restored CD4+ T cell function, amplified the number of follicular helper T cells and germinal-center B cells and plasmablasts, enhanced protective antibodies and rapidly cleared blood-stage malaria in mice. Thus, chronic malaria drives specific T cell dysfunction, and proper function can be restored by inhibitory therapies to enhance parasite control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human and rodent malaria induce specific phenotypic and functional characteristics of CD4+ T cell exhaustion.
Figure 2: Truncation of blood-stage P. yoelii infection with chloroquine reverses CD4+ T cell exhaustion.
Figure 3: Therapeutic in vivo blockade of PD-1 and LAG-3 in mice improves antiplasmodium CD4+ T cell response and accelerates parasite clearance.
Figure 4: Therapeutic blockade of T cell inhibitory receptors accelerates parasite clearance in genetically diverse backgrounds and prevents chronic Plasmodium infection.
Figure 5: Therapeutic in vivo blockade of PD-L1 and LAG-3 in mice enhances the differentiation of CD4+ TFH cells and plasmablasts during clinical malaria.
Figure 6: Enhanced germinal-center B cell reactions, class-switch recombination and secretion of functionally protective antibodies to plasmodium after therapeutic blockade of PD-L1 and LAG-3 during clinical malaria.

Similar content being viewed by others

References

  1. Mackinnon, M.J. & Marsh, K. The selection landscape of malaria parasites. Science 328, 866–871 (2010).

    Article  CAS  PubMed  Google Scholar 

  2. World Health Organization. World Malaria Report 2010. <http://www.who.int/malaria/world_malaria_report_2010/en/index.html>.

  3. Snow, R.W. & Marsh, K. The consequences of reducing transmission of Plasmodium falciparum in Africa. Adv. Parasitol. 52, 235–264 (2002).

    Article  PubMed  Google Scholar 

  4. Wykes, M. & Good, M.F. A case for whole-parasite malaria vaccines. Int. J. Parasitol. 37, 705–712 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Good, M.F. & Doolan, D.L. Malaria vaccine design: immunological considerations. Immunity 33, 555–566 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. Pinzon-Charry, A. et al. Low doses of killed parasite in CpG elicit vigorous CD4+ T cell responses against blood-stage malaria in mice. J. Clin. Invest. 120, 2967–2978 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Elliott, S.R., Kuns, R.D. & Good, M.F. Heterologous immunity in the absence of variant-specific antibodies after exposure to subpatent infection with blood-stage malaria. Infect. Immun. 73, 2478–2485 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pombo, D.J. et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360, 610–617 (2002).

    Article  PubMed  Google Scholar 

  9. Riley, E.M., Wahl, S., Perkins, D.J. & Schofield, L. Regulating immunity to malaria. Parasite Immunol. 28, 35–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Amante, F.H. & Good, M.F. Prolonged Th1-like response generated by a Plasmodium yoelii-specific T cell clone allows complete clearance of infection in reconstituted mice. Parasite Immunol. 19, 111–126 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Amante, F.H. & Good, M.F. Experimental asexual blood stage malaria immunity. Curr. Protoc. Immunol. 29, 19.4.1–19.4.18 (2001).

    Google Scholar 

  12. Kumar, S. & Miller, L.H. Cellular mechanisms in immunity to blood stage infection. Immunol. Lett. 25, 109–114 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Vinetz, J.M. et al. Adoptive transfer of CD8+ T cells from immune animals does not transfer immunity to blood-stage Plasmodium yoelii malaria. J. Immunol. 144, 1069–1074 (1990).

    CAS  PubMed  Google Scholar 

  14. Miller, L.H., Good, M.F. & Milon, G. Malaria pathogenesis. Science 264, 1878–1883 (1994).

    Article  CAS  PubMed  Google Scholar 

  15. Krajden, S., Panisko, D.M., Tobe, B., Yang, J. & Keystone, J.S. Prolonged infection with Plasmodium falciparum in a semi-immune patient. Trans. R. Soc. Trop. Med. Hyg. 85, 731–732 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Revel, M.P. et al. Plasmodium falciparum malaria after three years in a non-endemic area. Trans. R. Soc. Trop. Med. Hyg. 82, 832 (1988).

    Article  CAS  PubMed  Google Scholar 

  17. Theunissen, C. et al. Falciparum malaria in patient 9 years after leaving malaria-endemic area. Emerg. Infect. Dis. 15, 115–116 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li, C., Seixas, E. & Langhorne, J. Rodent malarias: the mouse as a model for understanding immune responses and pathology induced by the erythrocytic stages of the parasite. Med. Microbiol. Immunol. (Berl.) 189, 115–126 (2001).

    Article  CAS  Google Scholar 

  19. Day, C.L. et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443, 350–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Betts, M.R. et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 107, 4781–4789 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Migueles, S.A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 3, 1061–1068 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Zajac, A.J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Barber, D.L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Blackburn, S.D. et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat. Immunol. 10, 29–37 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Weiss, G.E. et al. The Plasmodium falciparum–specific human memory B cell compartment expands gradually with repeated malaria infections. PLoS Pathog. 6, e1000912 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Butler, N.S. et al. Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host Microbe 9, 451–462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rai, D., Pham, N.L., Harty, J.T. & Badovinac, V.P. Tracking the total CD8 T cell response to infection reveals substantial discordance in magnitude and kinetics between inbred and outbred hosts. J. Immunol. 183, 7672–7681 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. McDermott, D. & Varga, S.M. Quantifying antigen-specific CD4 T cells during a viral infection: CD4 T cell responses are larger than we think. J. Immunol. (31 October 2011) doi:10.4049/jimmunol.1102104.

    Article  CAS  PubMed  Google Scholar 

  29. Oxenius, A., Bachmann, M.F., Zinkernagel, R.M. & Hengartner, H. Virus-specific MHC-class II-restricted TCR-transgenic mice: effects on humoral and cellular immune responses after viral infection. Eur. J. Immunol. 28, 390–400 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Brown, K.E., Freeman, G.J., Wherry, E.J. & Sharpe, A.H. Role of PD-1 in regulating acute infections. Curr. Opin. Immunol. 22, 397–401 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sharpe, A.H., Wherry, E.J., Ahmed, R. & Freeman, G.J. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat. Immunol. 8, 239–245 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Goldberg, M.V. & Drake, C.G. LAG-3 in Cancer Immunotherapy. Curr. Top. Microbiol. Immunol. 344, 269–278 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, C.T. et al. Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Achtman, A.H., Stephens, R., Cadman, E.T., Harrison, V. & Langhorne, J. Malaria-specific antibody responses and parasite persistence after infection of mice with Plasmodium chabaudi chabaudi. Parasite Immunol. 29, 435–444 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Langhorne, J. The role of CD4+ T-cells in the immune response to Plasmodium chabaudi. Parasitol. Today 5, 362–364 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. Meding, S.J. & Langhorne, J. CD4+ T cells and B cells are necessary for the transfer of protective immunity to Plasmodium chabaudi chabaudi. Eur. J. Immunol. 21, 1433–1438 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. Titanji, K. et al. Acute depletion of activated memory B cells involves the PD-1 pathway in rapidly progressing SIV-infected macaques. J. Clin. Invest. 120, 3878–3890 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Velu, V. et al. Enhancing SIV-specific immunity in vivo by PD-1 blockade. Nature 458, 206–210 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Fahey, L.M. et al. Viral persistence redirects CD4 T cell differentiation toward T follicular helper cells. J. Exp. Med. 208, 987–999 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wipasa, J. et al. Effect of Plasmodium yoelii exposure on vaccination with the 19-kilodalton carboxyl terminus of merozoite surface protein 1 and vice versa and implications for the application of a human malaria vaccine. Infect. Immun. 77, 817–824 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Chandele, A., Mukerjee, P., Das, G., Ahmed, R. & Chauhan, V.S. Phenotypic and functional profiling of malaria-induced CD8 and CD4 T cells during blood-stage infection with Plasmodium yoelii. Immunology 132, 273–286 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kline, J. & Gajewski, T.F. Clinical development of mAbs to block the PD1 pathway as an immunotherapy for cancer. Curr. Opin. Investig. Drugs 11, 1354–1359 (2010).

    CAS  PubMed  Google Scholar 

  44. Porichis, F. et al. Responsiveness of HIV-specific CD4 T cells to PD-1 blockade. Blood 118, 965–974 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Golden-Mason, L. et al. Negative immune regulator Tim-3 is overexpressed on T cells in hepatitis C virus infection and its blockade rescues dysfunctional CD4+ and CD8+ T cells. J. Virol. 83, 9122–9130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Barber, D.L., Mayer-Barber, K.D., Feng, C.G., Sharpe, A.H. & Sher, A. CD4 T cells promote rather than control tuberculosis in the absence of PD-1-mediated inhibition. J. Immunol. 186, 1598–1607 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Reiley, W.W. et al. Distinct functions of antigen-specific CD4 T cells during murine Mycobacterium tuberculosis infection. Proc. Natl. Acad. Sci. USA 107, 19408–19413 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wherry, E.J. T cell exhaustion. Nat. Immunol. 12, 492–499 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. White, N.J. The treatment of malaria. N. Engl. J. Med. 335, 800–806 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Barfod, L. et al. Evasion of immunity to Plasmodium falciparum malaria by IgM masking of protective IgG epitopes in infected erythrocyte surface-exposed PfEMP1. Proc. Natl. Acad. Sci. USA 108, 12485–12490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wojciechowski, W. et al. Cytokine-producing effector B cells regulate type 2 immunity to H. polygyrus. Immunity 30, 421–433 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nolz, J.C. & Harty, J.T. Protective capacity of memory CD8+ T cells is dictated by antigen exposure history and nature of the infection. Immunity 34, 781–793 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Alexander, C.M. et al. T regulatory cells participate in the control of germinal center reactions. J. Immunol. 133, 452–456 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the residents of Kambila, Mali, for their participation; F. Lund (University of Rochester) for C57BL/6 Aicda−/− mice lacking the immunoglobulin heavy-chain μ-chain secretory domain; D.A.A. Vignali (St. Jude Children's Research Hospital) for hybridoma clone C9B7W; and S. Perlman, N. Schmidt and V. Badovinac for comments. Supported by the Division of Intramural Research of the National Institute of Allergy and Infectious Diseases, the US National Institutes of Health (for work in Mali; and AI085515 and AI42767 for work in the J.T.H. laboratory) and the Department of Microbiology, University of Iowa (for work in the J.T.H. laboratory).

Author information

Authors and Affiliations

Authors

Contributions

N.S.B. and J.M. designed the experiments, did the work, analyzed the data and wrote the manuscript; T.J.W., P.D.C. and J.T.H. designed the experiments, analyzed the data and wrote the manuscript; B.T. and O.K.D. coordinated the field studies and study site participants; and L.L.P. and L.T.T. did the histological studies and analyzed the data.

Corresponding authors

Correspondence to Peter D Crompton or John T Harty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, N., Moebius, J., Pewe, L. et al. Therapeutic blockade of PD-L1 and LAG-3 rapidly clears established blood-stage Plasmodium infection. Nat Immunol 13, 188–195 (2012). https://doi.org/10.1038/ni.2180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing