Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells

Abstract

Invariant natural killer T cells (iNKT cells) are innate-like T lymphocytes that act as critical regulators of the immune response. To better characterize this population, we profiled gene expression in iNKT cells during ontogeny and in peripheral subsets as part of the Immunological Genome Project. High-resolution comparative transcriptional analyses defined developmental and subset-specific programs of gene expression by iNKT cells. In addition, we found that iNKT cells shared an extensive transcriptional program with NK cells, similar in magnitude to that shared with major histocompatibility complex (MHC)-restricted T cells. Notably, the program shared by NK cells and iNKT cells also operated constitutively in γδ T cells and in adaptive T cells after activation. Together our findings highlight a core effector program regulated distinctly in innate and adaptive lymphocytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Upregulation of the expression of NKRs by iNKT cells at the end of thymic differentiation.
Figure 2: Expression of NKRs in peripheral CD4+ and CD4 iNKT cells.
Figure 3: The global transcriptional relationship between NK and iNKT cells is similar in magnitude to the relationship between T cells and iNKT cells.
Figure 4: Characterization of shared and different gene expression in iNKT cells, NK cells and T cells.
Figure 5: Transcriptional programs shared by NK cells and iNKT cells are acquired during thymic maturation of iNKT cells.
Figure 6: Activated splenic γδ T cells and IEL γδ T cells express genes in the program shared by NK cells and iNKT cells.
Figure 7: Programs shared by NK cells and iNKT cells are induced in activated CD8+ T cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Heng, T.S.P. et al. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    CAS  PubMed  Google Scholar 

  2. Cohen, N.R., Garg, S. & Brenner, M.B. Antigen presentation by CD1 lipids, T cells, and NKT cells in microbial immunity. Adv. Immunol. 102, 1–94 (2009).

    CAS  PubMed  Google Scholar 

  3. Bendelac, A., Savage, P.B. & Teyton, L. The biology of NKT cells. Annu. Rev. Immunol. 25, 297–336 (2007).

    CAS  PubMed  Google Scholar 

  4. Godfrey, D.I., Stankovic, S. & Baxter, A.G. Raising the NKT cell family. Nat. Immunol. 11, 197–206 (2010).

    CAS  PubMed  Google Scholar 

  5. Coquet, J.M. et al. Diverse cytokine production by NKT cell subsets and identification of an IL-17-producing CD4–NK1.1- NKT cell population. Proc. Natl. Acad. Sci. USA 105, 11287–11292 (2008).

    CAS  PubMed  Google Scholar 

  6. Cerundolo, V., Silk, J.D., Masri, S.H. & Salio, M. Harnessing invariant NKT cells in vaccination strategies. Nat. Rev. Immunol. 9, 28–38 (2009).

    CAS  PubMed  Google Scholar 

  7. Makino, Y., Kanno, R., Ito, T., Higashino, K. & Taniguchi, M. Predominant expression of invariant Vα14+ TCR α chain in NK1.1+ T cell populations. Int. Immunol. 7, 1157–1161 (1995).

    CAS  PubMed  Google Scholar 

  8. Bendelac, A. Mouse NK1+ T cells. Curr. Opin. Immunol. 7, 367–374 (1995).

    CAS  PubMed  Google Scholar 

  9. Godfrey, D.I., MacDonald, H.R., Kronenberg, M., Smyth, M.J. & Van Kaer, L. NKT cells: what's in a name? Nat. Rev. Immunol. 4, 231–237 (2004).

    CAS  PubMed  Google Scholar 

  10. Grégoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    PubMed  Google Scholar 

  11. Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Cooper, M.A. et al. In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100, 3633–3638 (2002).

    CAS  PubMed  Google Scholar 

  13. Matsuda, J.L. et al. Homeostasis of V alpha 14i NKT cells. Nat. Immunol. 3, 966–974 (2002).

    CAS  PubMed  Google Scholar 

  14. Brigl, M. & Brenner, M.B. How invariant natural killer T cells respond to infection by recognizing microbial or endogenous lipid antigens. Semin. Immunol. 22, 79–86 (2010).

    CAS  PubMed  Google Scholar 

  15. Lanier, L.L. Evolutionary struggles between NK cells and viruses. Nat. Rev. Immunol. 8, 259–268 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuylenstierna, C. et al. NKG2D performs two functions in invariant NKT cells: direct TCR-independent activation of NK-like cytolysis and co-stimulation of activation by CD1d. Eur. J. Immunol. 41, 1913–1923 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kawamura, T. et al. NKG2A inhibits invariant NKT cell activation in hepatic injury. J. Immunol. 182, 250–258 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Maeda, M., Lohwasser, S., Yamamura, T. & Takei, F. Regulation of NKT cells by Ly49: analysis of primary NKT cells and generation of NKT cell line. J. Immunol. 167, 4180–4186 (2001).

    CAS  PubMed  Google Scholar 

  19. Ota, T. et al. IFN-γ-mediated negative feedback regulation of NKT-cell function by CD94/NKG2. Blood 106, 184–192 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brennan, P.J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat. Immunol. 12, 1202–1211 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Paget, C. et al. Activation of invariant NKT cells by toll-like receptor 9-stimulated dendritic cells requires type I interferon and charged glycosphingolipids. Immunity 27, 597–609 (2007).

    CAS  PubMed  Google Scholar 

  22. Salio, M. et al. Modulation of human natural killer T cell ligands on TLR-mediated antigen-presenting cell activation. Proc. Natl. Acad. Sci. USA 104, 20490–20495 (2007).

    CAS  PubMed  Google Scholar 

  23. Reschner, A., Hubert, P., Delvenne, P., Boniver, J. & Jacobs, N. Innate lymphocyte and dendritic cell cross-talk: a key factor in the regulation of the immune response. Clin. Exp. Immunol. 152, 219–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Andrews, D.M., Scalzo, A.A., Yokoyama, W.M., Smyth, M.J. & Degli-Esposti, M.A. Functional interactions between dendritic cells and NK cells during viral infection. Nat. Immunol. 4, 175–181 (2003).

    CAS  PubMed  Google Scholar 

  25. Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E. & Brenner, M.B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003).

    CAS  PubMed  Google Scholar 

  26. Fernandez, N.C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med. 5, 405–411 (1999).

    CAS  PubMed  Google Scholar 

  27. Vincent, M.S. et al. CD1-dependent dendritic cell instruction. Nat. Immunol. 3, 1163–1168 (2002).

    CAS  PubMed  Google Scholar 

  28. Walzer, T., Dalod, M., Vivier, E. & Zitvogel, L. Natural killer cell-dendritic cell crosstalk in the initiation of immune responses. Expert Opin. Biol. Ther. 5 Suppl 1, S49–S59 (2005).

    CAS  PubMed  Google Scholar 

  29. Savage, A.K. et al. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29, 391–403 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kovalovsky, D. et al. The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat. Immunol. 9, 1055–1064 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yu, S. & Cantorna, M.T. The vitamin D receptor is required for iNKT cell development. Proc. Natl. Acad. Sci. USA 105, 5207–5212 (2008).

    CAS  PubMed  Google Scholar 

  32. Gumperz, J.E., Miyake, S., Yamamura, T. & Brenner, M.B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195, 625–636 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Watarai, H. et al. Development and function of invariant natural killer T cells producing Th2- and Th17-cytokines. PLoS Biol. 10, e1001255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Crowe, N.Y. et al. Differential antitumor immunity mediated by NKT cell subsets in vivo. J. Exp. Med. 202, 1279–1288 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brigl, M. et al. Innate and cytokine-driven signals, rather than microbial antigens, dominate in natural killer T cell activation during microbial infection. J. Exp. Med. 208, 1163–1177 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Johnston, B., Kim, C.H., Soler, D., Emoto, M. & Butcher, E.C. Differential chemokine responses and homing patterns of murine TCRαβ NKT cell subsets. J. Immunol. 171, 2960–2969 (2003).

    CAS  PubMed  Google Scholar 

  37. Townsend, M.J. et al. T-bet regulates the terminal maturation and homeostasis of NK and Vα14i NKT cells. Immunity 20, 477–494 (2004).

    CAS  PubMed  Google Scholar 

  38. Thomas, P.D. et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31, 334–341 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. O'Brien, R.L. & Born, W.K. γδ T cell subsets: a link between TCR and function? Semin. Immunol. 22, 193–198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fahrer, A.M. et al. Attributes of gammadelta intraepithelial lymphocytes as suggested by their transcriptional profile. Proc. Natl. Acad. Sci. USA 98, 10261–10266 (2001).

    CAS  PubMed  Google Scholar 

  41. Shires, J., Theodoridis, E. & Hayday, A.C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    CAS  PubMed  Google Scholar 

  42. Vivier, E. & Anfossi, N. Inhibitory NK-cell receptors on T cells: witness of the past, actors of the future. Nat. Rev. Immunol. 4, 190–198 (2004).

    CAS  PubMed  Google Scholar 

  43. Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Matsuda, J.L. et al. T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood 107, 2797–2805 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gordy, L.E. et al. IL-15 regulates homeostasis and terminal maturation of NKT cells. J. Immunol. 187, 6335–6345 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kastner, P. et al. Bcl11b represses a mature T-cell gene expression program in immature CD4+CD8+ thymocytes. Eur. J. Immunol. 40, 2143–2154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Yue, X., Izcue, A. & Borggrefe, T. Essential role of mediator subunit Med1 in invariant natural killer T-cell development. Proc. Natl. Acad. Sci. USA 108, 17105–17110 (2011).

    CAS  PubMed  Google Scholar 

  48. Sullivan, B.M., Juedes, A., Szabo, S.J., von Herrath, M. & Glimcher, L.H. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc. Natl. Acad. Sci. USA 100, 15818–15823 (2003).

    CAS  PubMed  Google Scholar 

  49. Inagaki-Ohara, K., Nishimura, H., Mitani, A. & Yoshikai, Y. Interleukin-15 preferentially promotes the growth of intestinal intraepithelial lymphocytes bearing gamma delta T cell receptor in mice. Eur. J. Immunol. 27, 2885–2891 (1997).

    CAS  PubMed  Google Scholar 

  50. Honma, S. et al. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419, 841–844 (2002).

    CAS  PubMed  Google Scholar 

  51. Miyazaki, K. et al. The role of the basic helix-loop-helix transcription factor Dec1 in the regulatory T cells. J. Immunol. 185, 7330–7339 (2010).

    CAS  PubMed  Google Scholar 

  52. Sun, H., Lu, B., Li, R.Q., Flavell, R.A. & Taneja, R. Defective T cell activation and autoimmune disorder in Stra13-deficient mice. Nat. Immunol. 2, 1040–1047 (2001).

    CAS  PubMed  Google Scholar 

  53. Weber, B.N. et al. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476, 63–68 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Willinger, T. et al. Human naive CD8 T cells down-regulate expression of the WNT pathway transcription factors lymphoid enhancer binding factor 1 and transcription factor 7 (T cell factor-1) following antigen encounter in vitro and in vivo. J. Immunol. 176, 1439–1446 (2006).

    CAS  PubMed  Google Scholar 

  55. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med. 15, 808–813 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Marshall, H.D. et al. Differential expression of Ly6C and T-bet distinguish effector and memory Th1 CD4+ cell properties during viral infection. Immunity 35, 633–646 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Huang da, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the tetramer facility of the US National Institutes of Health for ongoing support; and S. Raychaudhuri, X. Hu and H. Li for advice, discussions and technical assistance. Supported by the US National Institutes of Health (R01AI063428 to M.B.B., T32AI007306 to P.J.B, and R24AI072073 to the ImmGen Project consortium).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

N.R.C. primarily wrote the manuscript, conceived of and did experiments and analyzed the data; P.J.B. contributed substantially to the manuscript, conceived of and did experiments and analyzed the data; T.S. conceived of and did experiments and analyzed the data; G.F.W. did experiments; M.B. and J.K. assisted with experimental design and interpretation of the data; M.B.B. substantially contributed to the manuscript and supervised all experimental design, performance and data analysis; and The ImmGen Project Consortium contributed to experimental design and data collection.

Corresponding author

Correspondence to Michael B Brenner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Tables 1–16 (PDF 6998 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, N., Brennan, P., Shay, T. et al. Shared and distinct transcriptional programs underlie the hybrid nature of iNKT cells. Nat Immunol 14, 90–99 (2013). https://doi.org/10.1038/ni.2490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2490

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing