Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells

Abstract

Signaling through the G protein–coupled receptors for the complement fragments C3a and C5a (C3aR and C5aR, respectively) by dendritic cells and CD4+ cells provides costimulatory and survival signals to effector T cells. Here we found that when signals from C3aR and C5aR were not transduced into CD4+ cells, signaling via the kinases PI(3)Kγ, Akt and mTOR ceased, activation of the kinase PKA increased, autoinductive signaling by transforming growth factor-β1 (TGF-β1) initiated and CD4+ T cells became Foxp3+ induced regulatory T cells (iTreg cells). Endogenous TGF-β1 suppressed signaling through C3aR and C5aR by preventing the production of C3a and C5a and upregulating C5L2, an alternative receptor for C5a. The absence of signaling via C3aR and C5aR resulted in lower expression of costimulatory molecules and interleukin 6 (IL-6) and more production of IL-10. The resulting iTreg cells exerted robust suppression, had enhanced stability and suppressed ongoing autoimmune disease. Antagonism of C3aR and C5aR can also induce functional human iTreg cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of iTreg cells from stimulated CD4+ cells devoid of signaling via C3aR and C5aR in the absence of DCs.
Figure 2: Absence of signaling via C3aR and C5aR in CD4+ cells dominates in the induction of iTreg cells when wild-type DCs are present.
Figure 3: The absence of signaling via C3aR and C5aR lifts restraints on PKA activation and represses PI(3)Kγ-Akt-mTOR signaling.
Figure 4: TGF-β1 and C5L2 suppress complement production and enhance the induction of iTreg cells.
Figure 5: The iTreg cells that arise when signaling via C3aR and C5aR is disabled are stable and exert robust suppressor activity in vivo.
Figure 6: The iTreg cells induced when signaling via C3aR and C5aR is disabled in CD4+ cells inhibit autoimmune disease.
Figure 7: Human iTreg cells with robust suppressor activity can be induced by antagonism of C3aR and C5aR.

Similar content being viewed by others

References

  1. Wing, K. & Sakaguchi, S. Regulatory T cells exert checks and balances on self tolerance and autoimmunity. Nat. Immunol. 11, 7–13 (2010).

    CAS  PubMed  Google Scholar 

  2. Josefowicz, S.Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Shevach, E.M. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity 30, 636–645 (2009).

    CAS  PubMed  Google Scholar 

  4. Josefowicz, S.Z. & Rudensky, A. Control of regulatory T cell lineage commitment and maintenance. Immunity 30, 616–625 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Strainic, M.G. et al. Locally produced complement fragments C5a and C3a provide both costimulatory and survival signals to naive CD4+ T cells. Immunity 28, 425–435 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lalli, P.N. et al. Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis. Blood 112, 1759–1766 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu, J. et al. IFN-γ and IL-17 production in experimental autoimmune encephalomyelitis depends on local APC-T cell complement production. J. Immunol. 180, 5882–5889 (2008).

    CAS  PubMed  Google Scholar 

  8. Weaver, D.J. Jr. et al. C5a receptor-deficient dendritic cells promote induction of Treg and TH17 cells. Eur. J. Immunol. 40, 710–721 (2010).

    PubMed  PubMed Central  Google Scholar 

  9. Hashimoto, M. et al. Complement drives TH17 cell differentiation and triggers autoimmune arthritis. J. Exp. Med. 207, 1135–1143 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shevach, E.M. et al. The lifestyle of naturally occurring CD4+ CD25+ Foxp3+ regulatory T cells. Immunol. Rev. 212, 60–73 (2006).

    CAS  PubMed  Google Scholar 

  11. Wei, J. et al. Antagonistic nature of T helper 1/2 developmental programs in opposing peripheral induction of Foxp3+ regulatory T cells. Proc. Natl. Acad. Sci. USA 104, 18169–18174 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Itoh, S. et al. Interleukin-17 accelerates allograft rejection by suppressing regulatory T cell expansion. Circulation 124, S187–S196 (2011).

    CAS  PubMed  Google Scholar 

  13. Paul, W.E. & Zhu, J. How are TH2-type immune responses initiated and amplified? Nat. Rev. Immunol. 10, 225–235 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Laouar, Y. et al. TGF-β signaling in dendritic cells is a prerequisite for the control of autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 105, 10865–10870 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat. Rev. Immunol. 12, 325–338 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schraufstatter, I.U., Trieu, K., Sikora, L., Sriramarao, P. & DiScipio, R. Complement c3a and c5a induce different signal transduction cascades in endothelial cells. J. Immunol. 169, 2102–2110 (2002).

    CAS  PubMed  Google Scholar 

  17. Alcázar, I. et al. Phosphoinositide 3-kinase γ participates in T cell receptor-induced T cell activation. J. Exp. Med. 204, 2977–2987 (2007).

    PubMed  PubMed Central  Google Scholar 

  18. Huang, J. & Manning, B.D. A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem. Soc. Trans. 37, 217–222 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ching, C.B. & Hansel, D.E. Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway. Lab. Invest. 90, 1406–1414 (2010).

    CAS  PubMed  Google Scholar 

  20. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl. Acad. Sci. USA 105, 7797–7802 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yaqub, S. & Tasken, K. Role for the cAMP-protein kinase A signaling pathway in suppression of antitumor immune responses by regulatory T cells. Crit. Rev. Oncog. 14, 57–77 (2008).

    PubMed  Google Scholar 

  22. Merkenschlager, M. & von Boehmer, H. PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. J. Exp. Med. 207, 1347–1350 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, M., Fraser, D. & Phillips, A. ERK, p38, and Smad signaling pathways differentially regulate transforming growth factor-β1 autoinduction in proximal tubular epithelial cells. Am. J. Pathol. 169, 1282–1293 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Flanders, K.C., Holder, M.G. & Winokur, T.S. Autoinduction of mRNA and protein expression for transforming growth factor-beta S in cultured cardiac cells. J. Mol. Cell. Cardiol. 27, 805–812 (1995).

    CAS  PubMed  Google Scholar 

  25. Kim, S.J., Jeang, K.T., Glick, A.B., Sporn, M.B. & Roberts, A.B. Promoter sequences of the human transforming growth factor-β1 gene responsive to transforming growth factor-β1 autoinduction. J. Biol. Chem. 264, 7041–7045 (1989).

    CAS  PubMed  Google Scholar 

  26. Bamberg, C.E. et al. The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. J. Biol. Chem. 285, 7633–7644 (2010).

    CAS  PubMed  Google Scholar 

  27. Gao, H. et al. Evidence for a functional role of the second C5a receptor C5L2. FASEB J. 19, 1003–1005 (2005).

    CAS  PubMed  Google Scholar 

  28. Cain, S.A. & Monk, P.N. The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J. Biol. Chem. 277, 7165–7169 (2002).

    CAS  PubMed  Google Scholar 

  29. Okinaga, S. et al. C5L2, a nonsignaling C5A binding protein. Biochemistry 42, 9406–9415 (2003).

    CAS  PubMed  Google Scholar 

  30. Chen, Q., Kim, Y.C., Laurence, A., Punkosdy, G.A. & Shevach, E.M. IL-2 controls the stability of Foxp3 expression in TGF-β-induced Foxp3+ T cells in vivo. J. Immunol. 186, 6329–6337 (2011).

    CAS  PubMed  Google Scholar 

  31. Haribhai, D. et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 35, 109–122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Pothoven, K.L. et al. Rapamycin-conditioned donor dendritic cells differentiate CD4CD25Foxp3 T cells in vitro with TGF-β1 for islet transplantation. Am. J. Transplant. 10, 1774–1784 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tran, D.Q., Ramsey, H. & Shevach, E.M. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-β dependent but does not confer a regulatory phenotype. Blood 110, 2983–2990 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Allan, S.E. et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int. Immunol. 19, 345–354 (2007).

    CAS  PubMed  Google Scholar 

  35. Wang, J., Ioan-Facsinay, A., van der Voort, E.I., Huizinga, T.W. & Toes, R.E. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells. Eur. J. Immunol. 37, 129–138 (2007).

    CAS  PubMed  Google Scholar 

  36. Gavin, M.A. et al. Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA 103, 6659–6664 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    CAS  PubMed  Google Scholar 

  38. O'Gorman, W.E. et al. The initial phase of an immune response functions to activate regulatory T cells. J. Immunol. 183, 332–339 (2009).

    CAS  PubMed  Google Scholar 

  39. Ohno, M. et al. A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Mol. Immunol. 37, 407–412 (2000).

    CAS  PubMed  Google Scholar 

  40. Honczarenko, M. et al. C5L2 receptor is not involved in C3a/C3a-desArg-mediated enhancement of bone marrow hematopoietic cell migration to CXCL12. Leukemia 19, 1682–1683, author reply 1684–1685 (2005).

    CAS  PubMed  Google Scholar 

  41. Lee, H., Whitfeld, P.L. & Mackay, C.R. Receptors for complement C5a. The importance of C5aR and the enigmatic role of C5L2. Immunol. Cell Biol. 86, 153–160 (2008).

    CAS  PubMed  Google Scholar 

  42. Chen, N.J. et al. C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nature 446, 203–207 (2007).

    CAS  PubMed  Google Scholar 

  43. Gerard, N.P. et al. An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J. Biol. Chem. 280, 39677–39680 (2005).

    CAS  PubMed  Google Scholar 

  44. Rittirsch, D. et al. Functional roles for C5a receptors in sepsis. Nat. Med. 14, 551–557 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang, C., Zhang, X., Miwa, T. & Song, W.C. Complement promotes the development of inflammatory T-helper 17 cells through synergistic interaction with Toll-like receptor signaling and interleukin-6 production. Blood 114, 1005–1015 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hajishengallis, G. & Lambris, J.D. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 31, 154–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hawlisch, H. & Kohl, J. Complement and Toll-like receptors: key regulators of adaptive immune responses. Mol. Immunol. 43, 13–21 (2006).

    CAS  PubMed  Google Scholar 

  48. Zhang, X. et al. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood 110, 228–236 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Heeger, P.S. et al. Decay-accelerating factor modulates induction of T cell immunity. J. Exp. Med. 201, 1523–1530 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Lambris (University of Pennsylvania) for C5aR-A synthetic peptide; C. Gerard (Harvard University) for C3ar1−/−, C3ar1−/− and Gpr77−/− mice; V.J. Kuchroo (Harvard University) for Foxp3-GFP mice; Michael Caroll (Harvard University) for C3−/− mice; B. Cobb, S.v.n. Prasad, G. Dubyak and D. Anthony Jr. for critical reading; M. Sramkoski for help with six-color flow cytometry in vivo suppression assays; H.S. Kim for immunoblot analysis; J. Letterio (Case Western Reserve University) for the inhibitor of TGF-βR1, mAb to TGF-β1 and inhibitor of Smad3 and for discussions; and P. Heeger for discussions. Supported by the US National Institutes of Health (R0123598 and EY011288 to M.E.M.; T32 HL083823-03 to M.G.S.; and AI071125 to P. Heeger) and the US Department of Defense (BC085077 to M.E.M.).

Author information

Authors and Affiliations

Authors

Contributions

M.G.S. did and analyzed the experiments and participated in their design and the writing of the manuscript; E.M.S. consulted in the design and analysis of the experiments and participated in the writing of the manuscript; F.A. did some of the experiments and prepared the knockout mice; F.L. consulted in the design and analysis of the experiments; the M.E.M. group developed original concepts and brought them to E.M.S.; all work was done in the laboratory of M.E.M. under the direction of M.E.M.; and M.E.M. designed and analyzed the experiments and wrote the manuscript.

Corresponding author

Correspondence to M Edward Medof.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 5368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strainic, M., Shevach, E., An, F. et al. Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells. Nat Immunol 14, 162–171 (2013). https://doi.org/10.1038/ni.2499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2499

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing