Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer

Abstract

Two major populations of myeloid-derived suppressor cells (MDSCs), monocytic MDSCs (M-MDSCs) and polymorphonuclear MDSCs (PMN-MDSCs) regulate immune responses in cancer and other pathologic conditions. Under physiologic conditions, Ly6ChiLy6G inflammatory monocytes, which are the normal counterpart of M-MDSCs, differentiate into macrophages and dendritic cells. PMN-MDSCs are the predominant group of MDSCs that accumulates in cancer. Here we show that a large proportion of M-MDSCs in tumor-bearing mice acquired phenotypic, morphological and functional features of PMN-MDSCs. Acquisition of this phenotype, but not the functional attributes of PMN-MDSCs, was mediated by transcriptional silencing of the retinoblastoma gene through epigenetic modifications mediated by histone deacetylase 2 (HDAC-2). These data demonstrate a new regulatory mechanism of myeloid cells in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MDSC populations in tumor-bearing mice.
Figure 2: Differentiation of PMN-MDSCs from M-MDSCs in vitro.
Figure 3: Differentiation of PMN-MDSCs from M-MDSCs in vivo.
Figure 4: Expression of retinoblastoma in MDSCs.
Figure 5: Association of Rb1 with subset of M-MDSCs.
Figure 6: PMN-MDSCs and M-MDSCs in cancer patients.
Figure 7: Retinoblastoma and regulation of myeloid differentiation in cancer.
Figure 8: Role of HDAC-2 in silencing Rb1 in MDSCs.

Similar content being viewed by others

References

  1. Gabrilovich, D.I. et al. The terminology issue for myeloid-derived suppressor cells. Cancer Res. 67, 425 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gabrilovich, D.I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gabrilovich, D.I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ostrand-Rosenberg, S. & Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499–4506 (2009).

    CAS  PubMed  Google Scholar 

  5. Cuenca, A.G. et al. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol. Med. 17, 281–292 (2011).

    CAS  PubMed  Google Scholar 

  6. Highfill, S.L. et al. Bone marrow myeloid-derived suppressor cells (MDSCs) inhibit graft-versus-host disease (GVHD) via an arginase-1-dependent mechanism that is up-regulated by interleukin-13. Blood 116, 5738–5747 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Jeisy-Scott, V. et al. Increased MDSC accumulation and Th2 biased response to influenza A virus infection in the absence of TLR7 in mice. PLoS ONE 6, e25242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, S., Akbar, S.M., Abe, M., Hiasa, Y. & Onji, M. Immunosuppressive functions of hepatic myeloid-derived suppressor cells of normal mice and in a murine model of chronic hepatitis B virus. Clin. Exp. Immunol. 166, 134–142 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhu, X., Herrera, G. & Ochoa, J.B. Immunosupression and infection after major surgery: a nutritional deficiency. Crit. Care Clin. 26, 491–500 (2010).

    PubMed  Google Scholar 

  10. Sander, L.E. et al. Hepatic acute-phase proteins control innate immune responses during infection by promoting myeloid-derived suppressor cell function. J. Exp. Med. 207, 1453–1464 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Youn, J.I., Nagaraj, S., Collazo, M. & Gabrilovich, D.I. Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J. Immunol. 181, 5791–5802 (2008).

    CAS  PubMed  Google Scholar 

  12. Movahedi, K. et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T-cell suppressive activity. Blood 111, 4233–4244 (2008).

    CAS  PubMed  Google Scholar 

  13. Dolcetti, L. et al. Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur. J. Immunol. 40, 22–35 (2010).

    CAS  PubMed  Google Scholar 

  14. Peranzoni, E. et al. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr. Opin. Immunol. 22, 238–244 (2010).

    CAS  PubMed  Google Scholar 

  15. Auffray, C., Sieweke, M.H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    CAS  PubMed  Google Scholar 

  16. Youn, J.-I., Collazo, M., Shalova, I., Biswas, S. & Gabrilovich, D. Characterization of the nature of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. J. Leukoc. Biol. 91, 167–181 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Brandau, S. et al. Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J. Leukoc. Biol. 89, 311–317 (2011).

    CAS  PubMed  Google Scholar 

  18. Nagaraj, S. & Gabrilovich, D.I. Myeloid-derived suppressor cells in human cancer. Cancer J. 16, 348–353 (2010).

  19. Sonda, N., Chioda, M., Zilio, S., Simonato, F. & Bronte, V. Transcription factors in myeloid-derived suppressor cell generation. Curr. Opin. Immunol. 23, 279–285 (2011).

    CAS  PubMed  Google Scholar 

  20. Condamine, T. & Gabrilovich, D.I. Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32, 19–25 (2011).

    CAS  PubMed  Google Scholar 

  21. Nagaraj, S. et al. Anti-inflammatory triterpenoid blocks immune suppressive function of myeloid-derived suppressor cells and improves immune response in cancer. Clin. Cancer Res. 16, 1812–1823 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Solito, S. et al. A human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cells. Blood 118, 2254–2265 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zea, A.H. et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res. 65, 3044–3048 (2005).

    CAS  PubMed  Google Scholar 

  24. Filipazzi, P. et al. Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine. J. Clin. Oncol. 25, 2546–2553 (2007).

    CAS  PubMed  Google Scholar 

  25. Poschke, I., Mougiakakos, D., Hansson, J., Masucci, G.V. & Kiessling, R. Immature immunosuppressive CD14+HLA-DR-/low cells in melanoma patients are Stat3hi and overexpress CD80, CD83, and DC-sign. Cancer Res. 70, 4335–4345 (2010).

    CAS  PubMed  Google Scholar 

  26. Walkley, C.R., Shea, J.M., Sims, N.A., Purton, L.E. & Orkin, S.H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Borregaard, N. & Cowland, J.B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503–3521 (1997).

    CAS  PubMed  Google Scholar 

  29. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Sasmono, R.T. et al. Mouse neutrophilic granulocytes express mRNA encoding the macrophage colony-stimulating factor receptor (CSF-1R) as well as many other macrophage-specific transcripts and can transdifferentiate into macrophages in vitro in response to CSF-1. J. Leukoc. Biol. 82, 111–123 (2007).

    CAS  PubMed  Google Scholar 

  31. Burkhart, D.L. & Sage, J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat. Rev. Cancer 8, 671–682 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Giacinti, C. & Giordano, A. RB and cell cycle progression. Oncogene 25, 5220–5227 (2006).

    CAS  PubMed  Google Scholar 

  33. Calo, E. et al. Rb regulates fate choice and lineage commitment in vivo. Nature 466, 1110–1114 (2010).

    PubMed  PubMed Central  Google Scholar 

  34. Macleod, K.F. The role of the RB tumour suppressor pathway in oxidative stress responses in the haematopoietic system. Nat. Rev. Cancer 8, 769–781 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Traore, K. et al. Signal transduction of phorbol 12-myristate 13-acetate (PMA)-induced growth inhibition of human monocytic leukemia THP-1 cells is reactive oxygen dependent. Leuk. Res. 29, 863–879 (2005).

    CAS  PubMed  Google Scholar 

  36. Bergh, G., Ehinger, M., Olsson, I., Jacobsen, S.E. & Gullberg, U. Involvement of the retinoblastoma protein in monocytic and neutrophilic lineage commitment of human bone marrow progenitor cells. Blood 94, 1971–1978 (1999).

    CAS  PubMed  Google Scholar 

  37. Daria, D. et al. The retinoblastoma tumor suppressor is a critical intrinsic regulator for hematopoietic stem and progenitor cells under stress. Blood 111, 1894–1902 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Walkley, C.R. & Orkin, S.H. Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 103, 9057–9062 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Viatour, P. et al. Hematopoietic stem cell quiescence is maintained by compound contributions of the retinoblastoma gene family. Cell Stem Cell 3, 416–428 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Fajas, L. et al. The retinoblastoma-histone deacetylase 3 complex inhibits PPARgamma and adipocyte differentiation. Dev. Cell 3, 903–910 (2002).

    CAS  PubMed  Google Scholar 

  41. Zhang, H.S. et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 101, 79–89 (2000).

    CAS  PubMed  Google Scholar 

  42. Takaki, T., Fukasawa, K., Suzuki-Takahashi, I. & Hirai, H. Cdk-mediated phosphorylation of pRB regulates HDAC binding in vitro. Biochem. Biophys. Res. Commun. 316, 252–255 (2004).

    CAS  PubMed  Google Scholar 

  43. Fan, L.X., Li, X., Magenheimer, B., Calvet, J.P. & Li, X. Inhibition of histone deacetylases targets the transcription regulator Id2 to attenuate cystic epithelial cell proliferation. Kidney Int. 81, 76–85 (2012).

    CAS  PubMed  Google Scholar 

  44. Gutsch, R. et al. CCAAT/enhancer-binding protein beta inhibits proliferation in monocytic cells by affecting the retinoblastoma protein/E2F/cyclin E pathway but is not directly required for macrophage morphology. J. Biol. Chem. 286, 22716–22729 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lasorella, A., Rothschild, G., Yokota, Y., Russell, R.G. & Iavarone, A. Id2 mediates tumor initiation, proliferation, and angiogenesis in Rb mutant mice. Mol. Cell. Biol. 25, 3563–3574 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ji, H. et al. Kras activation generates an inflammatory response in lung tumors. Oncogene 25, 2105–2112 (2006).

    CAS  PubMed  Google Scholar 

  47. Pickard, A., Wong, P.P. & McCance, D.J. Acetylation of Rb by PCAF is required for nuclear localization and keratinocyte differentiation. J. Cell Sci. 123, 3718–3726 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank A. Beg (H. Lee Moffitt Cancer Center) for providing us with Kras/mCC10 mice and D.J. McCance (Queen's University Belfast, UK) for providing us with Ad-Rb1 vectors. This work was supported by US National Institutes of Health grant CA84488.

Author information

Authors and Affiliations

Authors

Contributions

J.-I.Y. participated in design and performed most of the experiments evaluating MDSCs, V.K. and M.C. did most of the experiments assessing Rb1; Y.N., T.C., P.C. performed some of the experiments; A.V. assisted in experiments with HDAC and provided advice; P.H. performed cytological evaluation of the samples; S.A., J.C.M., M.F., A.S. and E.S. provided human samples and advice. D.I.G. designed most of the experiments, analyzed the data and together with J.-I.Y., Y.N. and T.C. wrote the paper.

Corresponding author

Correspondence to Dmitry I Gabrilovich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Table 1 (PDF 965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Youn, JI., Kumar, V., Collazo, M. et al. Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nat Immunol 14, 211–220 (2013). https://doi.org/10.1038/ni.2526

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2526

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer