Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39

Abstract

Dendritic cells (DCs) control the balance between effector T cells and regulatory T cells in vivo. Hence, the study of DCs might identify mechanisms of disease pathogenesis and guide new therapeutic approaches for disorders mediated by the immune system. We found that interleukin 27 (IL-27) signaling in mouse DCs limited the generation of effector cells of the TH1 and TH17 subsets of helper T cells and the development of experimental autoimmune encephalomyelitis (EAE). The effects of IL-27 were mediated at least in part through induction of the immunoregulatory molecule CD39 in DCs. IL-27-induced CD39 decreased the extracellular concentration of ATP and downregulated nucleotide-dependent activation of the NLRP3 inflammasome. Finally, therapeutic vaccination with IL-27-conditioned DCs suppressed established relapsing-remitting EAE. Thus, IL-27 signaling in DCs limited pathogenic T cell responses and the development of autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-27RA expression in DCs.
Figure 2: IL-27 modulates the antigen-presenting function of cDCs.
Figure 3: IL-27RA signaling in cDCs controls T cell differentiation and EAE development.
Figure 4: CD39 is required for the inhibitory effects of IL-27 on DCs.
Figure 5: IL-27-induced CD39 controls extracellular ATP and activation of the NLRP3 inflammasome.
Figure 6: CD39 in DCs controls T cell differentiation and EAE development.
Figure 7: Vaccination with IL-27-conditioned DCs suppresses EAE.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Nylander, A. & Hafler, D.A. Multiple sclerosis. J. Clin. Invest. 122, 1180–1188 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Pierson, E., Simmons, S.B., Castelli, L. & Goverman, J.M. Mechanisms regulating regional localization of inflammation during CNS autoimmunity. Immunol. Rev. 248, 205–215 (2012).

    PubMed  PubMed Central  Google Scholar 

  3. Bailey, S.L., Schreiner, B., Mcmahon, E.J. & Miller, S.D. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH-17 cells in relapsing EAE. Nat. Immunol. 8, 172–180 (2007).

    CAS  PubMed  Google Scholar 

  4. Yogev, N. et al. Dendritic cells ameliorate autoimmunity in the CNS by controlling the homeostasis of PD-1 receptor+ regulatory T cells. Immunity 37, 264–275 (2012).

    CAS  PubMed  Google Scholar 

  5. Comabella, M., Montalban, X., Münz, C. & Lünemann, J.D. Targeting dendritic cells to treat multiple sclerosis. Nat. Rev. Nephrol. 6, 499–507 (2010).

    CAS  Google Scholar 

  6. Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328–334 (2005).

    CAS  PubMed  Google Scholar 

  7. McMahon, E.J., Bailey, S.L., Castenada, C.V., Waldner, H. & Miller, S.D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11, 335–339 (2005).

    CAS  PubMed  Google Scholar 

  8. Kastelein, R.A., Hunter, C.A. & Cua, D.J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221–242 (2007).

    CAS  PubMed  Google Scholar 

  9. Molle, C., Goldman, M. & Goriely, S. Critical role of the IFN-stimulated gene factor 3 complex in TLR-mediated IL-27p28 gene expression revealing a two-step activation process. J. Immunol. 184, 1784–1792 (2010).

    CAS  PubMed  Google Scholar 

  10. Mitsdoerffer, M. & Kuchroo, V. New pieces in the puzzle: how does interferon-β really work in multiple sclerosis? Ann. Neurol. 65, 487–488 (2009).

    PubMed  Google Scholar 

  11. Hunter, C.A. & Kastelein, R. Interleukin-27: balancing protective and pathological immunity. Immunity 37, 960–969 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fitzgerald, D.C. et al. Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis. J. Immunol. 179, 3268–3275 (2007).

    CAS  PubMed  Google Scholar 

  13. Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. Nat. Immunol. 7, 929–936 (2006).

    CAS  PubMed  Google Scholar 

  14. Awasthi, A. et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 8, 1380–1389 (2007).

    CAS  PubMed  Google Scholar 

  15. Fitzgerald, D.C. et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat. Immunol. 8, 1372–1379 (2007).

    CAS  PubMed  Google Scholar 

  16. Stumhofer, J.S. et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7, 937–945 (2006).

    CAS  PubMed  Google Scholar 

  17. Stumhofer, J.S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat. Immunol. 8, 1363–1371 (2007).

    CAS  PubMed  Google Scholar 

  18. Wang, S., Miyazaki, Y., Shinozaki, Y. & Yoshida, H. Augmentation of antigen-presenting and Th1-promoting functions of dendritic cells by WSX-1(IL-27R) deficiency. J. Immunol. 179, 6421–6428 (2007).

    CAS  PubMed  Google Scholar 

  19. Karakhanova, S., Bedke, T., Enk, A.H. & Mahnke, K. IL-27 renders DC immunosuppressive by induction of B7–H1. J. Leukoc. Biol. 89, 837–845 (2011).

    CAS  PubMed  Google Scholar 

  20. Matta, B.M., Raimondi, G., Rosborough, B.R., Sumpter, T.L. & Thomson, A.W. IL-27 production and STAT3-dependent upregulation of B7–H1 mediate immune regulatory functions of liver plasmacytoid dendritic cells. J. Immunol. 188, 5227–5237 (2012).

    CAS  PubMed  Google Scholar 

  21. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    CAS  PubMed  Google Scholar 

  22. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma, A. & Malynn, B.A. A20: linking a complex regulator of ubiquitylation to immunity and human disease. Nat. Rev. Immunol. 12, 774–785 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Weber, M. et al. Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying NetGenerator V2.0. BMC Syst. Biol. 7, 1 (2013).

    PubMed  PubMed Central  Google Scholar 

  25. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gandhi, R. et al. Activation of the aryl hydrocarbon receptor induces human type 1 regulatory T cell–like and Foxp3+ regulatory T cells. Nat. Immunol. 11, 846–853 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chalmin, F. et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity 36, 362–373 (2012).

    CAS  PubMed  Google Scholar 

  28. Eltzschig, H.K., Sitkovsky, M.V. & Robson, S.C. Purinergic signaling during inflammation. N. Engl. J. Med. 367, 2322–2333 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  PubMed  Google Scholar 

  30. Gris, D. et al. NLRP3 plays a critical role in the development of experimental autoimmune encephalomyelitis by mediating Th1 and Th17 responses. J. Immunol. 185, 974–981 (2010).

    CAS  PubMed  Google Scholar 

  31. Martinon, F., Mayor, A. & Tschopp, J. The inflammasomes: guardians of the body. Annu. Rev. Immunol. 27, 229–265 (2009).

    CAS  PubMed  Google Scholar 

  32. Tacken, P.J., de Vries, I.J., Torensma, R. & Figdor, C.G. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat. Rev. Immunol. 7, 790–802 (2007).

    CAS  PubMed  Google Scholar 

  33. Dhodapkar, M.V., Steinman, R.M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Quintana, F.J. et al. Antigen microarrays identify unique serum autoantibody signatures in clinical and pathologic subtypes of multiple sclerosis. Proc. Natl. Acad. Sci. USA 105, 18889–18894 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Robinson, W.H. et al. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat. Biotechnol. 21, 1033–1039 (2003).

    CAS  PubMed  Google Scholar 

  36. Apetoh, L. et al. The aryl hydrocarbon receptor interacts with c-Maf to promote the differentiation of type 1 regulatory T cells induced by IL-27. Nat. Immunol. 11, 854–861 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Moore, K.W., de Waal Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    CAS  PubMed  Google Scholar 

  38. Melillo, J.A. et al. Dendritic cell (DC)-specific targeting reveals Stat3 as a negative regulator of DC function. J. Immunol. 184, 2638–2645 (2010).

    CAS  PubMed  Google Scholar 

  39. Baker, B.J., Park, K.W., Qin, H., Ma, X. & Benveniste, E.N. IL-27 inhibits OSM-mediated TNF-α and iNOS gene expression in microglia. Glia 58, 1082–1093 (2010).

    PubMed  PubMed Central  Google Scholar 

  40. Färber, K. et al. The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration. Glia 56, 331–341 (2008).

    PubMed  Google Scholar 

  41. Mizumoto, N. et al. CD39 is the dominant Langerhans cell-associated ecto-NTPDase: modulatory roles in inflammation and immune responsiveness. Nat. Med. 8, 358–365 (2002).

    CAS  PubMed  Google Scholar 

  42. Sutterwala, F.S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    CAS  PubMed  Google Scholar 

  43. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Meng, G., Zhang, F., Fuss, I., Kitani, A. & Strober, W. A mutation in the Nlrp3 gene causing inflammasome hyperactivation potentiates Th17 cell-dominant immune responses. Immunity 30, 860–874 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Jähnisch, H. et al. Dendritic cell-based immunotherapy for prostate cancer. Clin. Dev. Immunol. 2010, 517493 (2010).

    PubMed  PubMed Central  Google Scholar 

  46. Yeste, A., Nadeau, M., Burns, E.J., Weiner, H.L. & Quintana, F.J. Nanoparticle-mediated codelivery of myelin antigen and a tolerogenic small molecule suppresses experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 109, 11270–11275 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Starossom, S.C. et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37, 249–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Quintana, F.J. et al. Aiolos promotes TH17 differentiation by directly silencing Il2 expression. Nat. Immunol. 13, 770–777 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Quintana, F.J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    CAS  PubMed  Google Scholar 

  50. Sun, X. et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice. Gastroenterology 139, 1030–1040 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Sharpe (Harvard Medical School) for PD-L1 deficient mice; D.J. Pinsky (University of Michigan Health Systems) for the Entpd1 promoter reporter; and D. Frank (Dana-Farber Cancer Institute, Boston) for vectors encoding constitutively active STAT3 and STAT1. Supported by the US National Institutes of Health (AI075285 and AI093903 to F.J.Q.) and the National Multiple Sclerosis Society (RG4111A1 to F.J.Q.).

Author information

Authors and Affiliations

Authors

Contributions

I.D.M., A.Y., S.M.V., E.J.B., Y.W. and L.M. did in vitro and in vivo experiments; B.P., I.S., R.B.-H. and S.E. did bioinformatics analysis; V.K.K. and S.C.R. provided Il27ra−/− and Entpd1−/− mice; I.D.M. and F.J.Q. wrote the manuscript; and F.J.Q. supervised the study and edited the manuscript.

Corresponding author

Correspondence to Francisco J Quintana.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 3790 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mascanfroni, I., Yeste, A., Vieira, S. et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39. Nat Immunol 14, 1054–1063 (2013). https://doi.org/10.1038/ni.2695

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2695

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing