Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The development and function of lung-resident macrophages and dendritic cells

Abstract

Gas exchange is the vital function of the lungs. It occurs in the alveoli, where oxygen and carbon dioxide diffuse across the alveolar epithelium and the capillary endothelium surrounding the alveoli, separated only by a fused basement membrane 0.2–0.5 μm in thickness. This tenuous barrier is exposed to dangerous or innocuous particles, toxins, allergens and infectious agents inhaled with the air or carried in the blood. The lung immune system has evolved to ward off pathogens and restrain inflammation-mediated damage to maintain gas exchange. Lung-resident macrophages and dendritic cells are located in close proximity to the epithelial surface of the respiratory system and the capillaries to sample and examine the air-borne and blood-borne material. In communication with alveolar epithelial cells, they set the threshold and the quality of the immune response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development of lung DC subsets in the steady state.
Figure 2: Development of AMs.

Similar content being viewed by others

References

  1. Revoir, W.H. & Bien, C.-T. Respiratory Protection Handbook (CRC Press, 1997).

  2. de Heer, H.J. et al. Essential role of lung plasmacytoid dendritic cells in preventing asthmatic reactions to harmless inhaled antigen. J. Exp. Med. 200, 89–98 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hintzen, G. et al. Induction of tolerance to innocuous inhaled antigen relies on a CCR7-dependent dendritic cell-mediated antigen transport to the bronchial lymph node. J. Immunol. 177, 7346–7354 (2006).

    CAS  PubMed  Google Scholar 

  4. Lambrecht, B.N. & Hammad, H. Lung dendritic cells in respiratory viral infection and asthma: from protection to immunopathology. Annu. Rev. Immunol. 30, 243–270 (2012).

    CAS  PubMed  Google Scholar 

  5. Lo, B., Hansen, S., Evans, K., Heath, J.K. & Wright, J.R. Alveolar epithelial type II cells induce T cell tolerance to specific antigen. J. Immunol. 180, 881–888 (2008).

    CAS  PubMed  Google Scholar 

  6. Strickland, D.H. et al. Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+CD25+ regulatory T cells. J. Exp. Med. 203, 2649–2660 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Becher, B. et al. High-dimensional analysis of the murine myeloid cell system. Nat. Immunol. 15, 1181–1189 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Ornatsky, O., Baranov, V.I., Bandura, D.R., Tanner, S.D. & Dick, J. Multiple cellular antigen detection by ICP-MS. J. Immunol. Methods 308, 68–76 (2006).

    CAS  PubMed  Google Scholar 

  9. Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    CAS  PubMed  Google Scholar 

  10. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8, 1207–1216 (2007).

    CAS  PubMed  Google Scholar 

  11. Naik, S.H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226 (2007).

    CAS  PubMed  Google Scholar 

  12. Sathe, P. et al. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor. Immunity 41, 104–115 (2014).

    CAS  PubMed  Google Scholar 

  13. Naik, S.H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nat. Immunol. 7, 663–671 (2006).

    CAS  PubMed  Google Scholar 

  14. Diao, J. et al. In situ replication of immediate dendritic cell (DC) precursors contributes to conventional DC homeostasis in lymphoid tissue. J. Immunol. 176, 7196–7206 (2006).

    CAS  PubMed  Google Scholar 

  15. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Daro, E. et al. Polyethylene glycol-modified GM-CSF expands CD11bhighCD11chigh but notCD11blowCD11chigh murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J. Immunol. 165, 49–58 (2000).

    CAS  PubMed  Google Scholar 

  17. Kingston, D. et al. The concerted action of GM-CSF and Flt3-ligand on in vivo dendritic cell homeostasis. Blood 114, 835–843 (2009).

    CAS  PubMed  Google Scholar 

  18. Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9, 676–683 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Schraml, B.U. et al. Genetic tracing via DNGR-1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154, 843–858 (2013).

    CAS  PubMed  Google Scholar 

  21. Jakubzick, C. et al. Blood monocyte subsets differentially give rise to CD103+ and CD103 pulmonary dendritic cell populations. J. Immunol. 180, 3019–3027 (2008).

    CAS  PubMed  Google Scholar 

  22. Miloud, T., Fiegler, N., Suffner, J., Hammerling, G.J. & Garbi, N. Organ-specific cellular requirements for in vivo dendritic cell generation. J. Immunol. 188, 1125–1135 (2012).

    CAS  PubMed  Google Scholar 

  23. Walzer, T., Brawand, P., Swart, D., Tocker, J. & De Smedt, T. No defect in T-cell priming, secondary response, or tolerance induction in response to inhaled antigens in Fms-like tyrosine kinase 3 ligand-deficient mice. J. Allergy Clin. Immunol. 115, 192–199 (2005).

    CAS  PubMed  Google Scholar 

  24. Plantinga, M. et al. Conventional and monocyte-derived CD11b+ dendritic cells initiate and maintain T helper 2 cell-mediated immunity to house dust mite allergen. Immunity 38, 322–335 (2013).

    CAS  PubMed  Google Scholar 

  25. Greter, M. et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 36, 1031–1046 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Edelson, B.T. et al. Batf3-dependent CD11blow/− peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE 6, e25660 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Schneider, C. et al. Alveolar macrophages are essential for protection from respiratory failure and associated morbidity following influenza virus infection. PLoS Pathog. 10, e1004053 (2014).

    PubMed  PubMed Central  Google Scholar 

  28. Meredith, M.M. et al. Expression of the zinc finger transcription factor zDC (Zbtb46, Btbd4) defines the classical dendritic cell lineage. J. Exp. Med. 209, 1153–1165 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Satpathy, A.T. et al. Zbtb46 expression distinguishes classical dendritic cells and their committed progenitors from other immune lineages. J. Exp. Med. 209, 1135–1152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8α+ dendritic cells in cytotoxic T cell immunity. Science 322, 1097–1100 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Edelson, B.T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Tussiwand, R. et al. Compensatory dendritic cell development mediated by BATF-IRF interactions. Nature 490, 502–507 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gilliet, M. et al. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 195, 953–958 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    CAS  PubMed  Google Scholar 

  36. Fancke, B., Suter, M., Hochrein, H. & O'Keeffe, M. M-CSF: a novel plasmacytoid and conventional dendritic cell poietin. Blood 111, 150–159 (2008).

    CAS  PubMed  Google Scholar 

  37. Vogt, T.K., Link, A., Perrin, J., Finke, D. & Luther, S.A. Novel function for interleukin-7 in dendritic cell development. Blood 113, 3961–3968 (2009).

    CAS  PubMed  Google Scholar 

  38. Onai, N. et al. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 38, 943–957 (2013).

    CAS  PubMed  Google Scholar 

  39. Tsujimura, H., Tamura, T. & Ozato, K. Cutting edge: IFN consensus sequence binding protein/IFN regulatory factor 8 drives the development of type I IFN-producing plasmacytoid dendritic cells. J. Immunol. 170, 1131–1135 (2003).

    CAS  PubMed  Google Scholar 

  40. Laouar, Y., Welte, T., Fu, X.Y. & Flavell, R.A. STAT3 is required for Flt3L-dependent dendritic cell differentiation. Immunity 19, 903–912 (2003).

    CAS  PubMed  Google Scholar 

  41. Cisse, B. et al. Transcription factor E2–2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135, 37–48 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Sawai, C.M. et al. Transcription factor Runx2 controls the development and migration of plasmacytoid dendritic cells. J. Exp. Med. 210, 2151–2159 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Esashi, E. et al. The signal transducer STAT5 inhibits plasmacytoid dendritic cell development by suppressing transcription factor IRF8. Immunity 28, 509–520 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Jakubzick, C. et al. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity 39, 599–610 (2013).

    CAS  PubMed  Google Scholar 

  45. Jahnsen, F.L. et al. Accelerated antigen sampling and transport by airway mucosal dendritic cells following inhalation of a bacterial stimulus. J. Immunol. 177, 5861–5867 (2006).

    CAS  PubMed  Google Scholar 

  46. Thornton, E.E. et al. Spatiotemporally separated antigen uptake by alveolar dendritic cells and airway presentation to T cells in the lung. J. Exp. Med. 209, 1183–1199 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Furuhashi, K. et al. Mouse lung CD103+ and CD11bhigh dendritic cells preferentially induce distinct CD4+ T-cell responses. Am. J. Respir. Cell Mol. Biol. 46, 165–172 (2012).

    CAS  PubMed  Google Scholar 

  48. Nakano, H. et al. Pulmonary CD103+ dendritic cells prime Th2 responses to inhaled allergens. Mucosal Immunol. 5, 53–65 (2012).

    CAS  PubMed  Google Scholar 

  49. GeurtsvanKessel, C.H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Heer, A.K., Harris, N.L., Kopf, M. & Marsland, B.J. CD4+ and CD8+ T cells exhibit differential requirements for CCR7-mediated antigen transport during influenza infection. J. Immunol. 181, 6984–6994 (2008).

    CAS  PubMed  Google Scholar 

  51. Kandasamy, M. et al. Complement mediated signaling on pulmonary CD103+ dendritic cells is critical for their migratory function in response to influenza infection. PLoS Pathog. 9, e1003115 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kopf, M., Abel, B., Gallimore, A., Carroll, M. & Bachmann, M.F. Complement component C3 promotes T-cell priming and lung migration to control acute influenza virus infection. Nat. Med. 8, 373–378 (2002).

    CAS  PubMed  Google Scholar 

  53. del Rio, M.L., Rodriguez-Barbosa, J.I., Kremmer, E. & Forster, R. CD103 and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J. Immunol. 178, 6861–6866 (2007).

    CAS  PubMed  Google Scholar 

  54. Helft, J. et al. Cross-presenting CD103+ dendritic cells are protected from influenza virus infection. J. Clin. Invest. 122, 4037–4047 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Desch, A.N. et al. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208, 1789–1797 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ho, A.W. et al. Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J. Immunol. 187, 6011–6021 (2011).

    CAS  PubMed  Google Scholar 

  57. Ballesteros-Tato, A., Leon, B., Lund, F.E. & Randall, T.D. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8+ T cell responses to influenza. Nat. Immunol. 11, 216–224 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kim, T.S., Gorski, S.A., Hahn, S., Murphy, K.M. & Braciale, T.J. Distinct dendritic cell subsets dictate the fate decision between effector and memory CD8+ T cell differentiation by a CD24-dependent mechanism. Immunity 40, 400–413 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Doherty, P.C., Allan, W., Eichelberger, M. & Carding, S.R. Roles of αβ and γδ T cell subsets in viral immunity. Annu. Rev. Immunol. 10, 123–151 (1992).

    CAS  PubMed  Google Scholar 

  60. Iijima, N., Mattei, L.M. & Iwasaki, A. Recruited inflammatory monocytes stimulate antiviral Th1 immunity in infected tissue. Proc. Natl. Acad. Sci. USA 108, 284–289 (2011).

    PubMed  Google Scholar 

  61. Aldridge, J.R. Jr. et al. TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc. Natl. Acad. Sci. USA 106, 5306–5311 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lin, K.L., Suzuki, Y., Nakano, H., Ramsburg, E. & Gunn, M.D. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 180, 2562–2572 (2008).

    CAS  PubMed  Google Scholar 

  63. Langlois, R.A. & Legge, K.L. Plasmacytoid dendritic cells enhance mortality during lethal influenza infections by eliminating virus-specific CD8 T cells. J. Immunol. 184, 4440–4446 (2010).

    CAS  PubMed  Google Scholar 

  64. Oriss, T.B. et al. Dynamics of dendritic cell phenotype and interactions with CD4+ T cells in airway inflammation and tolerance. J. Immunol. 174, 854–863 (2005).

    CAS  PubMed  Google Scholar 

  65. Lombardi, V., Speak, A.O., Kerzerho, J., Szely, N. & Akbari, O. CD8α+β and CD8α+β+ plasmacytoid dendritic cells induce Foxp3+ regulatory T cells and prevent the induction of airway hyper-reactivity. Mucosal Immunol. 5, 432–443 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Khare, A. et al. Cutting edge: inhaled antigen upregulates retinaldehyde dehydrogenase in lung CD103+ but not plasmacytoid dendritic cells to induce Foxp3 de novo in CD4+ T cells and promote airway tolerance. J. Immunol. 191, 25–29 (2013).

    CAS  PubMed  Google Scholar 

  67. Hammad, H. et al. Inflammatory dendritic cells–not basophils–are necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J. Exp. Med. 207, 2097–2111 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. van Helden, M.J. & Lambrecht, B.N. Dendritic cells in asthma. Curr. Opin. Immunol. 25, 745–754 (2013).

    CAS  PubMed  Google Scholar 

  69. Nakano, H. et al. Migratory properties of pulmonary dendritic cells are determined by their developmental lineage. Mucosal Immunol. 6, 678–691 (2013).

    CAS  PubMed  Google Scholar 

  70. Balhara, J. & Gounni, A.S. The alveolar macrophages in asthma: a double-edged sword. Mucosal Immunol. 5, 605–609 (2012).

    CAS  PubMed  Google Scholar 

  71. Westphalen, K. et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506, 503–506 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Peão, M.N., Aguas, A.P., de Sa, C.M. & Grande, N.R. Morphological evidence for migration of particle-laden macrophages through the interalveolar pores of Kohn in the murine lung. Acta Anat. 147, 227–232 (1993).

    PubMed  Google Scholar 

  73. Bedoret, D. et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J. Clin. Invest. 119, 3723–3738 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Guilliams, M. et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210, 1977–1992 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schneider, C. et al. Induction of the nuclear receptor PPAR-γ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 15, 1026–1037 (2014).

    CAS  PubMed  Google Scholar 

  76. Strickland, D., Kees, U.R. & Holt, P.G. Regulation of T-cell activation in the lung: isolated lung T cells exhibit surface phenotypic characteristics of recent activation including down-modulated T-cell receptors, but are locked into the G0/G1 phase of the cell cycle. Immunology 87, 242–249 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Holt, P.G. et al. Downregulation of the antigen presenting cell function(s) of pulmonary dendritic cells in vivo by resident alveolar macrophages. J. Exp. Med. 177, 397–407 (1993).

    CAS  PubMed  Google Scholar 

  78. Thepen, T., Van Rooijen, N. & Kraal, G. Alveolar macrophage elimination in vivo is associated with an increase in pulmonary immune response in mice. J. Exp. Med. 170, 499–509 (1989).

    CAS  PubMed  Google Scholar 

  79. Josefowicz, S.Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lloyd, C.M. & Hawrylowicz, C.M. Regulatory T cells in asthma. Immunity 31, 438–449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Soroosh, P. et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med. 210, 775–788 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Munger, J.S. et al. The integrin alpha v beta 6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96, 319–328 (1999).

    CAS  PubMed  Google Scholar 

  83. Huang, X., Wu, J., Zhu, W., Pytela, R. & Sheppard, D. Expression of the human integrin beta6 subunit in alveolar type II cells and bronchiolar epithelial cells reverses lung inflammation in β6 knockout mice. Am. J. Respir. Cell Mol. Biol. 19, 636–642 (1998).

    CAS  PubMed  Google Scholar 

  84. Huang, X.Z. et al. Inactivation of the integrin β6 subunit gene reveals a role of epithelial integrins in regulating inflammation in the lung and skin. J. Cell Biol. 133, 921–928 (1996).

    CAS  PubMed  Google Scholar 

  85. Morris, D.G. et al. Loss of integrin αVβ6-mediated TGF-β activation causes Mmp12-dependent emphysema. Nature 422, 169–173 (2003).

    CAS  PubMed  Google Scholar 

  86. Koth, L.L. et al. Integrin β6 mediates phospholipid and collectin homeostasis by activation of latent TGF-β1. Am. J. Respir. Cell Mol. Biol. 37, 651–659 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sheppard, D. Transforming growth factor: a central modulator of pulmonary and airway inflammation and fibrosis. Proc. Am. Thorac. Soc. 3, 413–417 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hussell, T. & Bell, T.J. Alveolar macrophages: plasticity in a tissue-specific context. Nat. Rev. Immunol. 14, 81–93 (2014).

    CAS  PubMed  Google Scholar 

  89. Snelgrove, R.J. et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat. Immunol. 9, 1074–1083 (2008).

    CAS  PubMed  Google Scholar 

  90. Gardai, S.J. et al. By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115, 13–23 (2003).

    CAS  PubMed  Google Scholar 

  91. Kong, X.N. et al. LPS-induced down-regulation of signal regulatory protein α contributes to innate immune activation in macrophages. J. Exp. Med. 204, 2719–2731 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Janssen, W.J. et al. Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRPα. Am. J. Respir. Crit. Care Med. 178, 158–167 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Taylor, P.R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    CAS  PubMed  Google Scholar 

  94. Goldstein, E., Lippert, W. & Warshauer, D. Pulmonary alveolar macrophage. Defender against bacterial infection of the lung. J. Clin. Invest. 54, 519–528 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Green, G.M. & Kass, E.H. The role of the alveolar macrophage in the clearance of bacteria from the lung. J. Exp. Med. 119, 167–176 (1964).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Ballinger, M.N. et al. Role of granulocyte macrophage colony-stimulating factor during gram-negative lung infection with Pseudomonas aeruginosa. Am. J. Respir. Cell Mol. Biol. 34, 766–774 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Gonzalez-Juarrero, M. et al. Disruption of granulocyte macrophage-colony stimulating factor production in the lungs severely affects the ability of mice to control Mycobacterium tuberculosis infection. J. Leukoc. Biol. 77, 914–922 (2005).

    CAS  PubMed  Google Scholar 

  98. Paine, R. III et al. Granulocyte-macrophage colony-stimulating factor in the innate immune response to Pneumocystis carinii pneumonia in mice. J. Immunol. 164, 2602–2609 (2000).

    CAS  PubMed  Google Scholar 

  99. LeVine, A.M., Reed, J.A., Kurak, K.E., Cianciolo, E. & Whitsett, J.A. GM-CSF-deficient mice are susceptible to pulmonary group B streptococcal infection. J. Clin. Invest. 103, 563–569 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Janssen, W.J. et al. Surfactant proteins A and D suppress alveolar macrophage phagocytosis via interaction with SIRP alpha. Am. J. Respir. Crit. Care Med. 178, 158–167 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Brown, J.S. et al. The classical pathway is the dominant complement pathway required for innate immunity to Streptococcus pneumoniae infection in mice. Proc. Natl. Acad. Sci. USA 99, 16969–16974 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Gordon, S.B., Irving, G.R., Lawson, R.A., Lee, M.E. & Read, R.C. Intracellular trafficking and killing of Streptococcus pneumoniae by human alveolar macrophages are influenced by opsonins. Infect. Immun. 68, 2286–2293 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Arredouani, M. et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. J. Exp. Med. 200, 267–272 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chelen, C.J. et al. Human alveolar macrophages present antigen ineffectively due to defective expression of B7 costimulatory cell surface molecules. J. Clin. Invest. 95, 1415–1421 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Archambaud, C. et al. Contrasting roles of macrophages and dendritic cells in controlling initial pulmonary Brucella infection. Eur. J. Immunol. 40, 3458–3471 (2010).

    CAS  PubMed  Google Scholar 

  106. Kirby, A.C., Coles, M.C. & Kaye, P.M. Alveolar macrophages transport pathogens to lung draining lymph nodes. J. Immunol. 183, 1983–1989 (2009).

    CAS  PubMed  Google Scholar 

  107. Tumpey, T.M. et al. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 79, 14933–14944 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tate, M.D., Pickett, D.L., Van Rooijen, N., Brooks, A.G. & Reading, P.C. Critical role of airway macrophages in modulating disease severity during influenza virus infection of mice. J. Virol. 84, 7569–7580 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Purnama, C. et al. Transient ablation of alveolar macrophages leads to massive pathology of influenza infection without affecting cellular adaptive immunity. Eur. J. Immunol. 44, 2003–2012 (2014).

    CAS  PubMed  Google Scholar 

  110. Huang, F. F. et al. GM-CSF in the lung protects against lethal influenza infection. Am. J. Resp. Crit. Care Med. 184, 259–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Unkel, B. et al. Alveolar epithelial cells orchestrate DC function in murine viral pneumonia. J. Clin. Invest. 122, 3652–3664 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hashimoto, Y., Moki, T., Takizawa, T., Shiratsuchi, A. & Nakanishi, Y. Evidence for phagocytosis of influenza virus-infected, apoptotic cells by neutrophils and macrophages in mice. J. Immunol. 178, 2448–2457 (2007).

    CAS  PubMed  Google Scholar 

  113. Watanabe, Y., Hashimoto, Y., Shiratsuchi, A., Takizawa, T. & Nakanishi, Y. Augmentation of fatality of influenza in mice by inhibition of phagocytosis. Biochem. Biophys. Res. Commun. 337, 881–886 (2005).

    CAS  PubMed  Google Scholar 

  114. Ghosh, S., Gregory, D., Smith, A. & Kobzik, L. MARCO regulates early inflammatory responses against influenza: a useful macrophage function with adverse outcome. Am. J. Respir. Cell Mol. Biol. 45, 1036–1044 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Colonna, M. TREMs in the immune system and beyond. Nat. Rev. Immunol. 3, 445–453 (2003).

    CAS  PubMed  Google Scholar 

  116. Weber, B. et al. TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance. PLoS Pathog. 10, e1003900 (2014).

    PubMed  PubMed Central  Google Scholar 

  117. van Riel, D. et al. Highly pathogenic avian influenza virus H5N1 infects alveolar macrophages without virus production or excessive TNF-α induction. PLoS Pathog. 7, e1002099 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Kumagai, Y. et al. Alveolar macrophages are the primary interferon-α producer in pulmonary infection with RNA viruses. Immunity 27, 240–252 (2007).

    CAS  PubMed  Google Scholar 

  119. Wang, J. et al. Innate immune response of human alveolar macrophages during influenza A infection. PLoS ONE 7, e29879 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Seo, S.U. et al. Type I interferon signaling regulates Ly6Chi monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog. 7, e1001304 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Everitt, A.R. et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484, 519–523 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Bailey, C.C., Huang, I.-C., Kam, C. & Farzan, M. Ifitm3 limits the severity of acute influenza in mice. PLoS Pathog. 8, e1002909 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pothlichet, J., Chignard, M. & Si-Tahar, M. Cutting edge: innate immune response triggered by influenza A virus is negatively regulated by SOCS1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway. J. Immunol. 180, 2034–2038 (2008).

    CAS  PubMed  Google Scholar 

  124. Shahangian, A. et al. Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J. Clin. Invest. 119, 1910–1920 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Sun, K. & Metzger, D.W. Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nat. Med. 14, 558–564 (2008).

    CAS  PubMed  Google Scholar 

  126. Epelman, S., Lavine, K.J. & Randolph, G.J. Origin and functions of tissue macrophages. Immunity 41, 21–35 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Ginhoux, F. & Jung, S. Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat. Rev. Immunol. 14, 392–404 (2014).

    CAS  PubMed  Google Scholar 

  128. Naito, M., Takahashi, K. & Nishikawa, S. Development, differentiation, and maturation of macrophages in the fetal mouse liver. J. Leukoc. Biol. 48, 27–37 (1990).

    CAS  PubMed  Google Scholar 

  129. Naito, M., Yamamura, F., Nishikawa, S. & Takahashi, K. Development, differentiation, and maturation of fetal mouse yolk sac macrophages in cultures. J. Leukoc. Biol. 46, 1–10 (1989).

    CAS  PubMed  Google Scholar 

  130. Orkin, S.H. & Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    CAS  PubMed  Google Scholar 

  132. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Schneider, C. et al. Nuclear receptor PPARγ induction by the cytokine GM-CSF is critical for differentiation of fetal monocytes to alveolar macrophages. Nat. Immunol. 15, 1026–1037 (2014).

    CAS  PubMed  Google Scholar 

  134. Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 792–804 (2013).

  135. Golde, D.W., Finley, T.N. & Cline, M.J. The pulmonary macrophage in acute leukemia. N. Engl. J. Med. 290, 875–878 (1974).

    CAS  PubMed  Google Scholar 

  136. Golde, D.W., Byers, L.A. & Finley, T.N. Proliferative capacity of human alveolar macrophage. Nature 247, 373–375 (1974).

    CAS  PubMed  Google Scholar 

  137. Soderland, S.C. & Naum, Y. Growth of pulmonary alveolar macrophages in vitro. Nature 245, 150–152 (1973).

    CAS  PubMed  Google Scholar 

  138. Murphy, J., Summer, R., Wilson, A.A., Kotton, D.N. & Fine, A. The prolonged life-span of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 38, 380–385 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS  PubMed  Google Scholar 

  140. Molawi, K. et al. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211, 2151–2158 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Aziz, A., Soucie, E., Sarrazin, S. & Sieweke, M.H. MafB/c-Maf deficiency enables self-renewal of differentiated functional macrophages. Science 326, 867–871 (2009).

    CAS  PubMed  Google Scholar 

  142. Yamanaka, S. Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1, 39–49 (2007).

    CAS  PubMed  Google Scholar 

  143. Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Trapnell, B.C., Whitsett, J.A. & Nakata, K. Pulmonary alveolar proteinosis. N. Engl. J. Med. 349, 2527–2539 (2003).

    CAS  PubMed  Google Scholar 

  145. Trapnell, B.C., Carey, B.C., Uchida, K. & Suzuki, T. Pulmonary alveolar proteinosis, a primary immunodeficiency of impaired GM-CSF stimulation of macrophages. Curr. Opin. Immunol. 21, 514–521 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Trapnell, B.C. & Whitsett, J.A. Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. Annu. Rev. Physiol. 64, 775–802 (2002).

    CAS  PubMed  Google Scholar 

  147. Bonfield, T.L. et al. Peroxisome proliferator-activated receptor-γ is deficient in alveolar macrophages from patients with alveolar proteinosis. Am. J. Respir. Cell Mol. Biol. 29, 677–682 (2003).

    CAS  PubMed  Google Scholar 

  148. Nakamura, A. et al. Transcription repressor Bach2 is required for pulmonary surfactant homeostasis and alveolar macrophage function. J. Exp. Med. 210, 14 (2013).

    Google Scholar 

  149. Baldán, A. et al. Deletion of the transmembrane transporter ABCG1 results in progressive pulmonary lipidosis. J. Biol. Chem. 281, 29401–29410 (2006).

    PubMed  Google Scholar 

  150. Bates, S.R., Tao, J.-Q., Collins, H.L., Francone, O.L. & Rothblat, G.H. Pulmonary abnormalities due to ABCA1 deficiency in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L980–L989 (2005).

    CAS  PubMed  Google Scholar 

  151. McNeish, J. et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proc. Natl. Acad. Sci. USA 97, 4245–4250 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Baker, A.D. et al. Targeted PPARγ deficiency in alveolar macrophages disrupts surfactant catabolism. J. Lipid Res. 51, 1325–1331 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Blackwell, T.S. et al. NF-κB signaling in fetal lung macrophages disrupts airway morphogenesis. J. Immunol. 187, 2740–2747 (2011).

    CAS  PubMed  Google Scholar 

  154. Bachem, A. et al. Expression of XCR1 characterizes the Batf3-dependent lineage of dendritic cells capable of antigen cross-presentation. Front. Immunol. 3, 214 (2012).

    PubMed  PubMed Central  Google Scholar 

  155. Raymond, M. et al. Selective control of SIRP-alpha-positive airway dendritic cell trafficking through CD47 is critical for the development of TH2-mediated allergic inflammation. J. Allergy Clin. Iimmunol. 124, 1333–1342 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

Supported by the Swiss National Science Foundation (310030-124922/1) and Swiss Federal Institute of Technology Zürich (ETH-34 13-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Kopf.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopf, M., Schneider, C. & Nobs, S. The development and function of lung-resident macrophages and dendritic cells. Nat Immunol 16, 36–44 (2015). https://doi.org/10.1038/ni.3052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing