Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

The cytotoxic T cell proteome and its shaping by the kinase mTOR

Abstract

We used high-resolution mass spectrometry to map the cytotoxic T lymphocyte (CTL) proteome and the effect of the metabolic checkpoint kinase mTORC1 on CTLs. The CTL proteome was dominated by metabolic regulators and granzymes, and mTORC1 selectively repressed and promoted expression of a subset of CTL proteins (~10%). These included key CTL effector molecules, signaling proteins and a subset of metabolic enzymes. Proteomic data highlighted the potential for negative control of the production of phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) by mTORC1 in CTLs. mTORC1 repressed PtdIns(3,4,5)P3 production and determined the requirement for mTORC2 in activation of the kinase Akt. Our unbiased proteomic analysis thus provides comprehensive understanding of CTL identity and the control of CTL function by mTORC1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cytotoxic T cell proteome.
Figure 2: Abundance of key CTL proteins.
Figure 3: Comparison of the CTL transcriptome and CTL proteome.
Figure 4: The mTORC1-regulated CTL proteome.
Figure 5: mTORC1 regulation of cellular pathways.
Figure 6: Comparison of the mTORC1-controlled transcriptome and proteome in CTLs.
Figure 7: Selective control of CTL metabolism by mTORC1.
Figure 8: mTORC1 represses PtdIns(3,4,5)P3 production and controls the requirement for mTORC2 in the activation of Akt.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Heng, T.S.P. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Ly, T. et al. A proteomic chronology of gene expression through the cell cycle in human myeloid leukemia cells. eLife 3, e01630 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Larance, M. & Lamond, A.I. Multidimensional proteomics for cell biology. Nat. Rev. Mol. Cell Biol. 16, 269–280 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol. Cell. Proteomics 11, M111.014050 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Sinclair, L.V. et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat. Immunol. 9, 513–521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pollizzi, K.N. et al. mTORC1 and mTORC2 selectively regulate CD8+ T cell differentiation. J. Clin. Invest. 125, 2090–2108 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hara, K. et al. Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J. Biol. Chem. 273, 14484–14494 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Thoreen, C.C. et al. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Düvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Kidani, Y. et al. Sterol regulatory element-binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nat. Immunol. 14, 489–499 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Finlay, D.K. et al. PDK1 regulation of mTOR and hypoxia-inducible factor 1 integrate metabolism and migration of CD8+ T cells. J. Exp. Med. 209, 2441–2453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu, Y. et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332, 1322–1326 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsu, P.P. et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332, 1317–1322 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Harrington, L.S. et al. The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J. Cell Biol. 166, 213–223 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wisś niewski, J.R., Hein, M.Y., Cox, J. & Mann, M.A. 'proteomic ruler' for protein copy number and concentration estimation without spike-in standards. Mol. Cell. Proteomics 13, 3497–3506 (2014).

    Article  CAS  Google Scholar 

  18. Pearce, E.L. & Pearce, E.J. Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633–643 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sinclair, L.V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jacobs, S.R. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. J. Immunol. 180, 4476–4486 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Macintyre, A.N. et al. The glucose transporter Glut1 is selectively essential for CD4 T cell activation and effector function. Cell Metab. 20, 61–72 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simpson, I.A. et al. The facilitative glucose transporter GLUT3: 20 years of distinction. Am. J. Physiol. Endocrinol. Metab. 295, E242–E253 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, K.A. & Cantrell, D.A. Interleukin 2 regulates its own receptors. Proc. Natl. Acad. Sci. USA 82, 864–868 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feinerman, O. et al. Single-cell quantification of IL-2 response by effector and regulatory T cells reveals critical plasticity in immune response. Mol. Syst. Biol. 6, 437 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Best, J.A. et al. Transcriptional insights into the CD8+ T cell response to infection and memory T cell formation. Nat. Immunol. 14, 404–412 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. García-Martínez, J.M. et al. Ku-0063794 is a specific inhibitor of the mammalian target of rapamycin (mTOR). Biochem. J. 421, 29–42 (2009).

    Article  PubMed  CAS  Google Scholar 

  27. Rao, R.R., Li, Q., Bupp, M.R.G. & Shrikant, P.A. Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8+ T cell differentiation. Immunity 36, 374–387 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van der Windt, G.J.W. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Alessi, D.R. et al. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr. Biol. 7, 261–269 (1997).

    Article  CAS  PubMed  Google Scholar 

  31. Barnett, S.F. et al. Identification and characterization of pleckstrin-homology-domain-dependent and isoenzyme-specific Akt inhibitors. Biochem. J. 385, 399–408 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarbassov, D.D., Guertin, D.A., Ali, S.M. & Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307, 1098–1101 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Biondi, R.M., Kieloch, A., Currie, R.A., Deak, M. & Alessi, D.R. The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J. 20, 4380–4390 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delgoffe, G.M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nat. Immunol. 12, 295–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Najafov, A., Shpiro, N. & Alessi, D.R. Akt is efficiently activated by PIF-pocket- and PtdIns(3,4,5)P3-dependent mechanisms leading to resistance to PDK1 inhibitors. Biochem. J. 448, 285–295 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Waugh, C., Sinclair, L., Finlay, D., Bayascas, J.R. & Cantrell, D. Phosphoinositide (3,4,5)-triphosphate binding to phosphoinositide-dependent kinase 1 regulates a protein kinase B/Akt signaling threshold that dictates T-cell migration, not proliferation. Mol. Cell. Biol. 29, 5952–5962 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Macintyre, A.N. et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34, 224–236 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang, P., Li, Z., Fu, R., Wu, H. & Li, Z. Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell. Signal. 26, 1853–1862 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Palsson-McDermott, E.M. et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 21, 65–80 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Angulo, I. et al. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342, 866–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lucas, C.L. et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nat. Immunol. 15, 88–97 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Pircher, H., Bürki, K., Lang, R., Hengartner, H. & Zinkernagel, R.M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clark, J. et al. Quantification of PtdInsP3 molecular species in cells and tissues by mass spectrometry. Nat. Methods 8, 267–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Navarro, M.N., Goebel, J., Feijoo-Carnero, C., Morrice, N. & Cantrell, D.A. Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nat. Immunol. 12, 352–361 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Cox, J. et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol. Cell. Proteomics 13, 2513–2526 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Da Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  PubMed  CAS  Google Scholar 

  49. Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank past and present colleagues of the Cantrell Group for advice and discussions; C. Feijoo-Carnero for help with microarray analysis; T. Ly for help with peptide fractionation using hSAX; and D. Lamont and the team of the MS facility at the College of Life Sciences of the University of Dundee and the Finnish DNA microarray Centre at the Centre for Biotechnology (Turku, Finland). Supported by the Wellcome Trust (093713/Z/10/A to J.L.H., 073980/Z/03/Z and 105024/Z/14/Z to A.I.L., 065975/Z/01/A and 097418/Z/11/Z to D.A.C.).

Author information

Authors and Affiliations

Authors

Contributions

J.L.H., design and performance of proteomic and transcriptomic experiments and most other experiments; K.E.A., measurement of PtdIns(3,4,5)P3; L.V.S., glucose uptake assay; K.M.G., lactate output assay; A.B.M., Encyclopedia of Proteome Dynamics; P.T.H. and L.R.S., experimental design for measurement of PtdIns(3,4,5)P3; A.I.L., experimental design; D.A.C., experimental design and manuscript authorship (with input from J.L.H.).

Corresponding author

Correspondence to Doreen A Cantrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Experimental design for analysis of the CTL proteome.

Splenocytes from P14 TCR transgenic mice were activated for 48 h with gp33 in the presence of IL-2 and IL-12. Cells were expanded in IL-2/IL-12 for 4 days. CTL were lysed in urea buffer and digested with either lysyl endopeptidase (LysC) or combined LysC and trypsin and subjected to SAX chromatography prior to Orbitrap mass spectrometer analysis. Andromeda and MaxQuant were used for data normalisation, peak picking, database searching, peptide and protein identification. Further analysis was done using R, Perseus, Excel.

Supplementary Figure 2 Glutaminolysis in CTLs.

Representation of the glutaminolytic pathway: enzymes catalyzing glutaminolytic reactions in purple, metabolic intermediates in black. Glutamate dehydrogenase (GLUD1) as rate limiting step highlighted.

Supplementary Figure 3 Modes of Akt activation in CTLs.

Different mechanisms of Akt activation. Low PtdIns(3,4,5)P3 (PIP3) levels in the plasma membrane cause Akt to be locked in an inactive state. IL-2 receptor and nutrient signaling in CTL maintain basal PI(3)K and mTOR signaling and thus enable the PIF-pocket dependent activation of membrane-bound Akt via its upstream kinase PDK1. Acute mTOR inhibition leads to dephosphorylation of Akt p-S473 and thus disrupts the colocalisation of Akt and PDK1 via p-S473-PIF-pocket interaction. Chronic mTOR inhibition leads to the accumulation of PtdIns(3,4,5)P3 and allows colocalisation of Akt and PDK1 via their respective PH domains and subsequent activation of Akt via T308 phosphorylation regardless of dephosphorylation of Akt p-S473.

Supplementary Figure 4 Effects of treatment with rapamycin or KU-0063794 on the CTL proteome.

Scatter plot depicting correlation of mean fold changes in protein expression of DMSO (vehicle) treated CTL vs CTL treated with rapamycin (x-axis) or KU-0063794 (y-axis) obtained by stable isotope labelling of amino acid in cell culture (SILAC) based proteomics. 4934 rapamycin:DMSO vs KU-0063794:DMSO pairs are plotted. Statistically different proteins (p ≤ 0.01, p-value determined by unpaired, two-tailed, unequal variance t-test on SILAC ratios) are depicted as filled black circles. All proteins with p ≤ 0.01 show a less than 2-fold difference between the inhibitor induced effects (area within the two dashed diagonal lines). Furthermore, when compared to control CTL, all of these proteins show a less than 2-fold up or down-regulation with either rapamycin (area between the two dashed vertical lines) or KU-0063794 (area between the two horizontal dashed lines).

Supplementary Figure 5 Encyclopedia of Proteome Dynamics web-based data-sharing tool.

Screen shots of several sections of the EPD (http://www.peptracker.com/epd). (a) Homepage with search input accepting Uniprot accession, gene term, protein description, protein name or gene ontology terms. (b) Data derived from multiple databases such as Uniprot or STRING (e.g. in this case for perforin) are displayed with links to these and further external resources. (c) Histogram showing mean estimated copy numbers of the selected protein (as calculated by the proteomic ruler) highlighted in the context of the copy numbers distribution of the entire dataset. (d) Volcano plot for the 48h rapamycin treated CTL. The mean fold change for the selected protein is highlighted in the volcano plot and shown in the context of all protein groups of the dataset.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 2844 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hukelmann, J., Anderson, K., Sinclair, L. et al. The cytotoxic T cell proteome and its shaping by the kinase mTOR. Nat Immunol 17, 104–112 (2016). https://doi.org/10.1038/ni.3314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing