Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Amino acid auxotrophy as a system of immunological control nodes

Abstract

Cells of the immune system are auxotrophs for most amino acids, including several nonessential ones. Arginine and tryptophan are used within the regulatory immune networks to control proliferation and function through pathways that actively deplete the amino acid from the microenvironment or that create regulatory molecules such as nitric oxide or kynurenines. How immune cells integrate information about essential amino acid supplies and then transfer these signals to growth and activation pathways remains unclear but has potential for pathway discovery about amino sensing. In applied research, strategies to harness amino acid auxotrophy so as to block cancerous lymphocyte growth have been attempted for decades with limited success. Emerging insights about amino acid metabolism may lead to new strategies in clinical medicine whereby both amino acid auxotrophy and the immunoregulatory pathways controlled by amino acids can be manipulated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulated amino acid–metabolizing enzymes in immunity.
Figure 2: Arg1 in immune responses.
Figure 3: Arginine regeneration and the anaplerotic Krebs 'cycle' in M1 macrophages.
Figure 4: Clinical exploitation of amino acid auxotrophy.

Similar content being viewed by others

References

  1. Currie, G.A. Activated macrophages kill tumour cells by releasing arginase. Nature 273, 758–759 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Currie, G.A., Gyure, L. & Cifuentes, L. Microenvironmental arginine depletion by macrophages in vivo. Br. J. Cancer 39, 613–620 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meltzer, M.S., Ruco, L.P. & Leonard, E.J. Macrophage activation for tumor cytotoxicity: mechanisms of macrophage activation by lymphokines. Adv. Exp. Med. Biol. 121B, 381–398 (1979).

    CAS  PubMed  Google Scholar 

  4. Ruco, L.P. & Meltzer, M.S. Macrophage activation for tumor cytotoxicity: development of macrophage cytotoxic activity requires completion of a sequence of short-lived intermediary reactions. J. Immunol. 121, 2035–2042 (1978).

    CAS  PubMed  Google Scholar 

  5. Keller, R., Geiges, M. & Keist, R. L-Arginine-dependent reactive nitrogen intermediates as mediators of tumor cell killing by activated macrophages. Cancer Res. 50, 1421–1425 (1990).

    CAS  PubMed  Google Scholar 

  6. Mills, C.D. Molecular basis of “suppressor” macrophages. Arginine metabolism via the nitric oxide synthetase pathway. J. Immunol. 146, 2719–2723 (1991).

    CAS  PubMed  Google Scholar 

  7. McGaha, T.L. et al. Amino acid catabolism: a pivotal regulator of innate and adaptive immunity. Immunol. Rev. 249, 135–157 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boulland, M.L. et al. Human IL4I1 is a secreted L-phenylalanine oxidase expressed by mature dendritic cells that inhibits T-lymphocyte proliferation. Blood 110, 220–227 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Mason, J.M. et al. IL-4-induced gene-1 is a leukocyte L-amino acid oxidase with an unusual acidic pH preference and lysosomal localization. J. Immunol. 173, 4561–4567 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Cousin, C. et al. The immunosuppressive enzyme IL4I1 promotes FoxP3+ regulatory T lymphocyte differentiation. Eur. J. Immunol. 45, 1772–1782 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Santarlasci, V. et al. Rarity of human T helper 17 cells is due to retinoic acid orphan receptor-dependent mechanisms that limit their expansion. Immunity 36, 201–214 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Vonk, F.J. et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc. Natl. Acad. Sci. USA 110, 20651–20656 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Thompson, R.W. et al. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity. PLoS Pathog. 4, e1000023 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grohmann, U. & Bronte, V. Control of immune response by amino acid metabolism. Immunol. Rev. 236, 243–264 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Mills, C.D. M1 and M2 macrophages: oracles of health and disease. Crit. Rev. Immunol. 32, 463–488 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Murray, P.J. & Wynn, T.A. Obstacles and opportunities for understanding macrophage polarization. J. Leukoc. Biol. 89, 557–563 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murray, P.J. & Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11, 723–737 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murray, P.J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gordon, S. & Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Munder, M., Eichmann, K. & Modolell, M. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J. Immunol. 160, 5347–5354 (1998).

    CAS  PubMed  Google Scholar 

  22. Munder, M. et al. Th1/Th2-regulated expression of arginase isoforms in murine macrophages and dendritic cells. J. Immunol. 163, 3771–3777 (1999).

    CAS  PubMed  Google Scholar 

  23. Adams, D.O. & Hamilton, T.A. The cell biology of macrophage activation. Annu. Rev. Immunol. 2, 283–318 (1984).

    Article  CAS  PubMed  Google Scholar 

  24. MacKaness, G.B. The immunological basis of acquired cellular resistance. J. Exp. Med. 120, 105–120 (1964).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mills, C.D., Kincaid, K., Alt, J.M., Heilman, M.J. & Hill, A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J. Immunol. 164, 6166–6173 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Martinez, F.O. & Gordon, S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep. 6, 13 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi, O., Morris, S.M. Jr., Zoghbi, H., Porter, C.W. & O'Brien, W.E. Generation of a mouse model for arginase II deficiency by targeted disruption of the arginase II gene. Mol. Cell. Biol. 21, 811–813 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gobert, A.P. et al. Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl. Acad. Sci. USA 98, 13844–13849 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rutschman, R. et al. Cutting edge: Stat6-dependent substrate depletion regulates nitric oxide production. J. Immunol. 166, 2173–2177 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Gray, M.J., Poljakovic, M., Kepka-Lenhart, D. & Morris, S.M. Jr. Induction of arginase I transcription by IL-4 requires a composite DNA response element for STAT6 and C/EBPbeta. Gene 353, 98–106 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Pauleau, A.L. et al. Enhancer-mediated control of macrophage-specific arginase I expression. J. Immunol. 172, 7565–7573 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Lang, R., Patel, D., Morris, J.J., Rutschman, R.L. & Murray, P.J. Shaping gene expression in activated and resting primary macrophages by IL-10. J. Immunol. 169, 2253–2263 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Chawla, A. Control of macrophage activation and function by PPARs. Circ. Res. 106, 1559–1569 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nguyen, K.D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. El Kasmi, K.C. et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 9, 1399–1406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pesce, J.T. et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 5, e1000371 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barron, L. et al. Role of arginase 1 from myeloid cells in th2-dominated lung inflammation. PLoS ONE 8, e61961 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herbert, D.R. et al. Arginase I suppresses IL-12/IL-23p40-driven intestinal inflammation during acute schistosomiasis. J. Immunol. 184, 6438–6446 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Wynn, T.A. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol. 4, 583–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morris, S.M. Jr. Arginine metabolism: boundaries of our knowledge. J. Nutr. 137 (suppl. 2), 1602S–1609S (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Fletcher, M. et al. L-Arginine depletion blunts antitumor T-cell responses by inducing myeloid-derived suppressor cells. Cancer Res. 75, 275–283 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Rodriguez, P.C., Quiceno, D.G. & Ochoa, A.C. L-arginine availability regulates T-lymphocyte cell-cycle progression. Blood 109, 1568–1573 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rodriguez, P.C. et al. L-arginine consumption by macrophages modulates the expression of CD3 zeta chain in T lymphocytes. J. Immunol. 171, 1232–1239 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Esser-von Bieren, J. et al. Antibodies trap tissue migrating helminth larvae and prevent tissue damage by driving IL-4Rα-independent alternative differentiation of macrophages. PLoS Pathog. 9, e1003771 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Albina, J.E., Mills, C.D., Henry, W.L. Jr. & Caldwell, M.D. Temporal expression of different pathways of 1-arginine metabolism in healing wounds. J. Immunol. 144, 3877–3880 (1990).

    CAS  PubMed  Google Scholar 

  46. Campbell, L., Saville, C.R., Murray, P.J., Cruickshank, S.M. & Hardman, M.J. Local arginase 1 activity is required for cutaneous wound healing. J. Invest. Dermatol. 133, 2461–2470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2, 907–916 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Schindler, H. & Bogdan, C. NO as a signaling molecule: effects on kinases. Int. Immunopharmacol. 1, 1443–1455 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Nicholson, B., Manner, C.K., Kleeman, J. & MacLeod, C.L. Sustained nitric oxide production in macrophages requires the arginine transporter CAT2. J. Biol. Chem. 276, 15881–15885 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Qualls, J.E. et al. Sustained generation of nitric oxide and control of mycobacterial infection requires argininosuccinate synthase 1. Cell Host Microbe 12, 313–323 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Everts, B. et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 120, 1422–1431 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Modolell, M., Corraliza, I.M., Link, F., Soler, G. & Eichmann, K. Reciprocal regulation of the nitric oxide synthase/arginase balance in mouse bone marrow-derived macrophages by TH1 and TH2 cytokines. Eur. J. Immunol. 25, 1101–1104 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Qualls, J.E. et al. Arginine usage in mycobacteria-infected macrophages depends on autocrine-paracrine cytokine signaling. Sci. Signal. 3, ra62 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mills, C.D. Macrophage arginine metabolism to ornithine/urea or nitric oxide/citrulline: a life or death issue. Crit. Rev. Immunol. 21, 399–425 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. El-Gayar, S., Thüring-Nahler, H., Pfeilschifter, J., Röllinghoff, M. & Bogdan, C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. J. Immunol. 171, 4561–4568 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Lee, J., Ryu, H., Ferrante, R.J., Morris, S.M. Jr. & Ratan, R.R. Translational control of inducible nitric oxide synthase expression by arginine can explain the arginine paradox. Proc. Natl. Acad. Sci. USA 100, 4843–4848 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Reece, S.T. et al. Serine protease activity contributes to control of Mycobacterium tuberculosis in hypoxic lung granulomas in mice. J. Clin. Invest. 120, 3365–3376 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Duque-Correa, M.A. et al. Macrophage arginase-1 controls bacterial growth and pathology in hypoxic tuberculosis granulomas. Proc. Natl. Acad. Sci. USA 111, E4024–E4032 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mori, M. Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J. Nutr. 137 (suppl. 2), 1616S–1620S (2007).

    Article  CAS  PubMed  Google Scholar 

  60. Rapovy, S.M. et al. Differential requirements for l-citrulline and l-arginine during antimycobacterial macrophage activity. J. Immunol. 195, 3293–3300 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Jha, A.K. et al. Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419–430 (2015).

    Article  CAS  PubMed  Google Scholar 

  62. Bessede, A. et al. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511, 184–190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Munn, D.H. & Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 34, 137–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Platten, M., Wick, W. & Van den Eynde, B.J. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 72, 5435–5440 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Stone, T.W., Stoy, N. & Darlington, L.G. An expanding range of targets for kynurenine metabolites of tryptophan. Trends Pharmacol. Sci. 34, 136–143 (2013).

    Article  CAS  PubMed  Google Scholar 

  66. Moffett, J.R. & Namboodiri, M.A. Tryptophan and the immune response. Immunol. Cell Biol. 81, 247–265 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Thomas, S., DuHadaway, J., Prendergast, G.C. & Laury-Kleintop, L. Specific in situ detection of murine indoleamine 2, 3-dioxygenase. J. Cell. Biochem. 115, 391–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schmidt, S.K. et al. Influence of tryptophan contained in 1-Methyl-Tryptophan on antimicrobial and immunoregulatory functions of indoleamine 2,3-dioxygenase. PLoS ONE 7, e44797 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Opitz, C.A. et al. The indoleamine-2,3-dioxygenase (IDO) inhibitor 1-methyl-D-tryptophan upregulates IDO1 in human cancer cells. PLoS ONE 6, e19823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Degterev, A., Maki, J.L. & Yuan, J. Activity and specificity of necrostatin-1, small-molecule inhibitor of RIP1 kinase. Cell Death Differ. 20, 366 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Röhrig, U.F., Majjigapu, S.R., Vogel, P., Zoete, V. & Michielin, O. Challenges in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. J. Med. Chem. http://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.5b00326 (23 September 2015).

  72. Munn, D.H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Munn, D.H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Cobbold, S.P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl. Acad. Sci. USA 106, 12055–12060 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Smith, C. et al. IDO is a nodal pathogenic driver of lung cancer and metastasis development. Cancer Discov. 2, 722–735 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jasperson, L.K. et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality. Blood 111, 3257–3265 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Holmgaard, R.B., Zamarin, D., Munn, D.H., Wolchok, J.D. & Allison, J.P. Indoleamine 2,3-dioxygenase is a critical resistance mechanism in antitumor T cell immunotherapy targeting CTLA-4. J. Exp. Med. 210, 1389–1402 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, R. & Green, D.R. Metabolic checkpoints in activated T cells. Nat. Immunol. 13, 907–915 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Carr, E.L. et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J. Immunol. 185, 1037–1044 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Nakaya, M. et al. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity 40, 692–705 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sinclair, L.V. et al. Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat. Immunol. 14, 500–508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. MacIver, N.J., Michalek, R.D. & Rathmell, J.C. Metabolic regulation of T lymphocytes. Annu. Rev. Immunol. 31, 259–283 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Klysz, D. et al. Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Sci. Signal. 8, ra97 (2015).

    Article  CAS  PubMed  Google Scholar 

  84. Delgoffe, G.M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zoncu, R., Efeyan, A. & Sabatini, D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rebsamen, M. et al. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1. Nature 519, 477–481 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, S. et al. Metabolism. Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1. Science 347, 188–194 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, K. et al. T cell exit from quiescence and differentiation into Th2 cells depend on Raptor-mTORC1-mediated metabolic reprogramming. Immunity 39, 1043–1056 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zeng, H. et al. mTORC1 couples immune signals and metabolic programming to establish Treg-cell function. Nature 499, 485–490 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pollizzi, K.N. & Powell, J.D. Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends Immunol. 36, 13–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33, 929–941 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weichhart, T., Hengstschläger, M. & Linke, M. Regulation of innate immune cell function by mTOR. Nat. Rev. Immunol. 15, 599–614 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Broome, J.D. Studies on the mechanism of tumor inhibition by L-asparaginase. Effects of the enzyme on asparagine levels in the blood, normal tissues, and 6C3HED lymphomas of mice: differences in asparagine formation and utilization in asparaginase-sensitive and -resistant lymphoma cells. J. Exp. Med. 127, 1055–1072 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Chan, W.K. et al. The glutaminase activity of L-asparaginase is not required for anticancer activity against ASNS-negative cells. Blood 123, 3596–3606 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang, J. et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56, 205–218 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pui, C.H. & Evans, W.E. Treatment of acute lymphoblastic leukemia. N. Engl. J. Med. 354, 166–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  98. Chen, S.H. et al. A genome-wide approach identifies that the aspartate metabolism pathway contributes to asparaginase sensitivity. Leukemia 25, 66–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. Yau, T. et al. A phase 1 dose-escalating study of pegylated recombinant human arginase 1 (Peg-rhArg1) in patients with advanced hepatocellular carcinoma. Invest. New Drugs 31, 99–107 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Munder, M. Arginase: an emerging key player in the mammalian immune system. Br. J. Pharmacol. 158, 638–651 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sahin, E. et al. Macrophage PTEN regulates expression and secretion of arginase I modulating innate and adaptive immune responses. J. Immunol. 193, 1717–1727 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Gabrilovich, D.I., Ostrand-Rosenberg, S. & Bronte, V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 12, 253–268 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    Article  CAS  PubMed  Google Scholar 

  104. Beatty, W.L., Belanger, T.A., Desai, A.A., Morrison, R.P. & Byrne, G.I. Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect. Immun. 62, 3705–3711 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Gaur, U. et al. An effect of parasite-encoded arginase on the outcome of murine cutaneous leishmaniasis. J. Immunol. 179, 8446–8453 (2007).

    Article  CAS  PubMed  Google Scholar 

  106. Price, J.V. & Vance, R.E. The macrophage paradox. Immunity 41, 685–693 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Mussai, F. et al. Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity. Cancer Res. 75, 3043–3053 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Scott, L., Lamb, J., Smith, S. & Wheatley, D.N. Single amino acid (arginine) deprivation: rapid and selective death of cultured transformed and malignant cells. Br. J. Cancer 83, 800–810 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cama, E. et al. Human arginase II: crystal structure and physiological role in male and female sexual arousal. Biochemistry 42, 8445–8451 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Pawelek, P.D. et al. The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. EMBO J. 19, 4204–4215 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Colegio, O.R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Csóka, B. et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors. FASEB J. 26, 376–386 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. El Kasmi, K.C. et al. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J. Immunol. 193, 597–609 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Research in the author's laboratory is supported by grants from the US National Institutes of Health, Calithera Biosciences, National Cancer Institute Cancer Core grant P30 CA21765 and the American Lebanese Associated Charities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J Murray.

Ethics declarations

Competing interests

The author's laboratory has a collaborative agreement with Calithera Biosciences to investigate aspects of arginine metabolism in immune responses. No personal funds are derived from this agreement.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, P. Amino acid auxotrophy as a system of immunological control nodes. Nat Immunol 17, 132–139 (2016). https://doi.org/10.1038/ni.3323

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing