Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene regulation in the immune system by long noncoding RNAs

Abstract

Long noncoding RNAs (lncRNAs) are emerging as critical regulators of gene expression in the immune system. Studies have shown that lncRNAs are expressed in a highly lineage-specific manner and control the differentiation and function of innate and adaptive cell types. In this Review, we focus on mechanisms used by lncRNAs to regulate genes encoding products involved in the immune response, including direct interactions with chromatin, RNA and proteins. In addition, we address new areas of lncRNA biology, such as the functions of enhancer RNAs, circular RNAs and chemical modifications to RNA in cellular processes. We emphasize critical gaps in knowledge and future prospects for the roles of lncRNAs in the immune system and autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General lncRNA mechanism.
Figure 2: lncRNAs in the differentiation and function of immune cells.
Figure 3: New mechanisms: RNA modification and circular RNA.

Similar content being viewed by others

References

  1. Kapranov, P. et al. Large-scale transcriptional activity in chromosomes 21 and 22. Science 296, 916–919 (2002).

    CAS  PubMed  Google Scholar 

  2. Rinn, J.L. et al. The transcriptional activity of human chromosome 22. Genes Dev. 17, 529–540 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Djebali, S. et al. Landscape of transcription in human cells. Nature 489, 101–108 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iyer, M.K. et al. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet. 47, 199–208 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Mattick, J.S. & Rinn, J.L. Discovery and annotation of long noncoding RNAs. Nat. Struct. Mol. Biol. 22, 5–7 (2015).

    CAS  PubMed  Google Scholar 

  6. Rinn, J.L. & Chang, H.Y. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81, 145–166 (2012).

    CAS  PubMed  Google Scholar 

  7. Natoli, G. & Andrau, J.-C. Noncoding transcription at enhancers: general principles and functional models. Annu. Rev. Genet. 46, 1–19 (2012).

    CAS  PubMed  Google Scholar 

  8. Hansen, T.B. et al. Natural RNA circles function as efficient microRNA sponges. Nature 495, 384–388 (2013).

    CAS  PubMed  Google Scholar 

  9. Memczak, S. et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495, 333–338 (2013).

    CAS  PubMed  Google Scholar 

  10. Salzman, J., Gawad, C. & Wang, P.L Lacayo. N., Brown, P.O. Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PloS One 7, e30733 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Jeck, W.R. et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19, 141–157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Guo, J.U., Agarwal, V., Guo, H. & Bartel, D.P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409 (2014).

    PubMed  PubMed Central  Google Scholar 

  13. Brown, C.J. et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell 71, 527–542 (1992).

    CAS  PubMed  Google Scholar 

  14. Clemson, C.M., McNeil, J.A., Willard, H.F. & Lawrence, J.B. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132, 259–275 (1996).

    CAS  PubMed  Google Scholar 

  15. Zhao, J., Sun, B.K., Erwin, J.A., Song, J.-J. & Lee, J.T. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322, 750–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Leighton, P.A., Ingram, R.S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S.M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).

    CAS  PubMed  Google Scholar 

  17. Monnier, P. et al. H19 lncRNA controls gene expression of the imprinted gene network by recruiting MBD1. Proc. Natl. Acad. Sci. USA 110, 20693–20698 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Y. et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell 25, 69–80 (2013).

    CAS  PubMed  Google Scholar 

  19. Loewer, S. et al. Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 42, 1113–1117 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rinn, J.L. et al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Gupta, R.A. et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Flynn, R.A. & Chang, H.Y. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14, 752–761 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lee, J.T. & Bartolomei, M.S. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323 (2013).

    CAS  PubMed  Google Scholar 

  24. Tsai, M.-C., Spitale, R.C. & Chang, H.Y. Long intergenic noncoding RNAs: new links in cancer progression. Cancer Res. 71, 3–7 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, K.C. & Chang, H.Y. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43, 904–914 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cruz, J.A. & Westhof, E. The dynamic landscapes of RNA architecture. Cell 136, 604–609 (2009).

    CAS  PubMed  Google Scholar 

  27. Guttman, M. & Rinn, J.L. Modular regulatory principles of large non-coding RNAs. Nature 482, 339–346 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Latos, P.A. et al. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338, 1469–1472 (2012).

    CAS  PubMed  Google Scholar 

  29. Petruk, S. et al. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127, 1209–1221 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Engreitz, J.M. et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature 539, 452–455 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Sigova, A.A. et al. Transcription factor trapping by RNA in gene regulatory elements. Science 350, 978–981 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, Y., Syed, J. & Sugiyama, H. RNA-DNA triplex formation by long noncoding RNAs. Cell Chem. Biol, 23, 1325–1333 (2016).

    CAS  Google Scholar 

  33. Martianov, I., Ramadass, A., Serra Barros, A., Chow, N. & Akoulitchev, A. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445, 666–670 (2007).

    CAS  PubMed  Google Scholar 

  34. Schmitz, K.-M., Mayer, C., Postepska, A. & Grummt, I. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24, 2264–2269 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee, N., Moss, W.N., Yario, T.A. & Steitz, J.A. EBV noncoding RNA binds nascent RNA to drive host PAX5 to viral DNA. Cell 160, 607–618 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tsai, M.-C. et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Peschansky, V.J. & Wahlestedt, C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics 9, 3–12 (2014).

    CAS  PubMed  Google Scholar 

  38. Chu, C. et al. Systematic discovery of Xist RNA binding proteins. Cell 161, 404–416 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Wutz, A. Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation. Nat. Rev. Genet. 12, 542–553 (2011).

    CAS  PubMed  Google Scholar 

  40. Wang, K.C. et al. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472, 120–124 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dimitrova, N. et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol. Cell 54, 777–790 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huarte, M. et al. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142, 409–419 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kino, T., Hurt, D.E., Ichijo, T., Nader, N. & Chrousos, G.P. Noncoding RNA gas5 is a growth arrest- and starvation-associated repressor of the glucocorticoid receptor. Sci. Signal. 3, ra8 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Rapicavoli, N.A. et al. A mammalian pseudogene lncRNA at the interface of inflammation and anti-inflammatory therapeutics. eLife 2, e00762 (2013).

    PubMed  PubMed Central  Google Scholar 

  45. Li, Z. et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 22, 256–264 (2015).

    PubMed  Google Scholar 

  46. Ashwal-Fluss, R. et al. circRNA biogenesis competes with pre-mRNA splicing. Mol. Cell 56, 55–66 (2014).

    CAS  PubMed  Google Scholar 

  47. Cabili, M.N. et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25, 1915–1927 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guttman, M. et al. Ab initio reconstruction of transcriptomes of pluripotent and lineage committed cells reveals gene structures of thousands of lincRNAs. Nat. Biotechnol. 28, 503–510 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Washietl, S., Kellis, M. & Garber, M. Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals. Genome Res. 24, 616–628 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Li, L. et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 5, 3–12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kretz, M. et al. Control of somatic tissue differentiation by the long non-coding RNA TINCR. Nature 493, 231–235 (2013).

    CAS  PubMed  Google Scholar 

  52. Guttman, M. et al. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477, 295–300 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang, P.L. et al. Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9, e90859 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Guo, J.U., Agarwal, V., Guo, H. & Bartel, D.P. Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15, 409 (2014).

    PubMed  PubMed Central  Google Scholar 

  55. Liang, D. & Wilusz, J.E. Short intronic repeat sequences facilitate circular RNA production. Genes Dev. 28, 2233–2247 (2014).

    PubMed  PubMed Central  Google Scholar 

  56. Hu, G. et al. Expression and regulation of intergenic long noncoding RNAs during T cell development and differentiation. Nat. Immunol. 14, 1190–1198 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ranzani, V. et al. The long intergenic noncoding RNA landscape of human lymphocytes highlights the regulation of T cell differentiation by linc-MAF-4. Nat. Immunol. 16, 318–325 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Venkatraman, A. et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 500, 345–349 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Luo, M. et al. Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell 16, 426–438 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Satpathy, A.T., Wu, X., Albring, J.C. & Murphy, K.M. Re(de)fining the dendritic cell lineage. Nat. Immunol. 13, 1145–1154 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, P. et al. The STAT3-binding long noncoding RNA lnc-DC controls human dendritic cell differentiation. Science 344, 310–313 (2014).

    CAS  PubMed  Google Scholar 

  62. Kotzin, J.J. et al. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan. Nature 537, 239–243 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Dijkstra, J.M. & Ballingall, K.T. Non-human lnc-DC orthologs encode Wdnm1-like protein [version 2; referees: 3 approved]. F1000Research 3, 160 (2014).

    PubMed  PubMed Central  Google Scholar 

  64. Spurlock, C.F. III et al. Expression and functions of long noncoding RNAs during human T helper cell differentiation. Nat. Commun. 6, 6932–6943 (2015).

    CAS  PubMed  Google Scholar 

  65. Huang, W. et al. DDX5 and its associated lncRNA Rmrp modulate TH17 cell effector functions. Nature 528, 517–522 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Mäkitie, O., Kaitila, I. & Savilahti, E. Susceptibility to infections and in vitro immune functions in cartilage-hair hypoplasia. Eur. J. Pediatr. 157, 816–820 (1998).

    PubMed  Google Scholar 

  67. Bonafé, L. et al. Evolutionary comparison provides evidence for pathogenicity of RMRP mutations. PLoS Genet. 1, e47 (2005).

    PubMed  PubMed Central  Google Scholar 

  68. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Carpenter, S. et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 341, 789–792 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Geuens, T., Bouhy, D. & Timmerman, V. The hnRNP family: insights into their role in health and disease. Hum. Genet. 135, 851–867 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, Z. et al. The long noncoding RNA THRIL regulates TNFα expression through its interaction with hnRNPL. Proc. Natl. Acad. Sci. USA 111, 1002–1007 (2014).

    CAS  PubMed  Google Scholar 

  72. Krawczyk, M. & Emerson, B.M. p50-associated COX-2 extragenic RNA (PACER) activates COX-2 gene expression by occluding repressive NF-κB complexes. eLife 3, e01776 (2014).

    PubMed  PubMed Central  Google Scholar 

  73. Smith, W.L., DeWitt, D.L. & Garavito, R.M. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem. 69, 145–182 (2000).

    CAS  PubMed  Google Scholar 

  74. Sun, S. et al. Jpx RNA activates Xist by evicting CTCF. Cell 153, 1537–1551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen, Y.G. et al. Sensing self and foreign circular RNAs by intron identity. Mol. Cell. 67, 1–11 (2017).

    Google Scholar 

  76. Ng, W.L. et al. Inducible RasGEF1B circular RNA is a positive regulator of ICAM-1 in the TLR4/LPS pathway. RNA Biol. 13, 861–871 (2016).

    PubMed  PubMed Central  Google Scholar 

  77. Atianand, M.K. et al. A long noncoding RNA lincRNA-EPS acts as a transcriptional brake to restrain inflammation. Cell 165, 1672–1685 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Castellanos-Rubio, A. et al. A long noncoding RNA associated with susceptibility to celiac disease. Science 352, 91–95 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, B. et al. A cytoplasmic NF-κB interacting long noncoding RNA blocks IκB phosphorylation and suppresses breast cancer metastasis. Cancer Cell 27, 370–381 (2015).

    CAS  PubMed  Google Scholar 

  80. Gomez, J.A. et al. The NeST long ncRNA controls microbial susceptibility and epigenetic activation of the interferon-γ locus. Cell 152, 743–754 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Brahic, M., Bureau, J.F. & Michiels, T. The genetics of the persistent infection and demyelinating disease caused by Theiler's virus. Annu. Rev. Microbiol. 59, 279–298 (2005).

    CAS  PubMed  Google Scholar 

  82. Vigneau, S. et al. Homology between a 173-kb region from mouse chromosome 10, telomeric to the Ifng locus, and human chromosome 12q15. Genomics 78, 206–213 (2001).

    CAS  PubMed  Google Scholar 

  83. Vigneau, S., Rohrlich, P.-S., Brahic, M. & Bureau, J.F. Tmevpg1, a candidate gene for the control of Theiler's virus persistence, could be implicated in the regulation of gamma interferon. J. Virol. 77, 5632–5638 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Bihl, F., Brahic, M. & Bureau, J.F. Two loci, Tmevp2 and Tmevp3, located on the telomeric region of chromosome 10, control the persistence of Theiler's virus in the central nervous system of mice. Genetics 152, 385–392 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bureau, J.F. et al. Mapping loci influencing the persistence of Theiler's virus in the murine central nervous system. Nat. Genet. 5, 87–91 (1993).

    CAS  PubMed  Google Scholar 

  86. Levillayer, F., Mas, M., Levi-Acobas, F., Brahic, M. & Bureau, J.F. Interleukin 22 is a candidate gene for Tmevp3, a locus controlling Theiler's virus-induced neurological diseases. Genetics 176, 1835–1844 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Collier, S.P., Collins, P.L., Williams, C.L., Boothby, M.R. & Aune, T.M. Influence of Tmevpg1, a long intergenic noncoding RNA, on the expression of Ifng by Th1 cells. J. immunol. 189, 2084–2088 (2012).

    CAS  PubMed  Google Scholar 

  88. Collier, S.P., Henderson, M.A., Tossberg, J.T. & Aune, T.M. Regulation of the Th1 genomic locus from Ifng through Tmevpg1 by T-bet. J. Immunol. 193, 3959–3965 (2014).

    CAS  PubMed  Google Scholar 

  89. Willingham, A.T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005).

    CAS  PubMed  Google Scholar 

  90. Sharma, S. et al. Dephosphorylation of the nuclear factor of activated T cells (NFAT) transcription factor is regulated by an RNA-protein scaffold complex. Proc. Natl. Acad. Sci. USA 108, 11381–11386 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Liu, Z. et al. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat. Immunol. 12, 1063–1070 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Wang, Y. et al. Long noncoding RNA derived from CD244 signaling epigenetically controls CD8+ T-cell immune responses in tuberculosis infection. Proc. Natl. Acad. Sci. USA 112, E3883–E3892 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dunin-Horkawicz, S., Czerwoniec, A., Gajda, M.J., Feder, M., Grosjean, H. & Bujnicki, J.M. MODOMICS: a database of RNA modification pathways. Nucleic Acids Res. 34, D145–D149 (2006).

    CAS  PubMed  Google Scholar 

  94. Meyer, K.D. et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell 149, 1635–1646 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Dominissini, D. et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485, 201–206 (2012).

    CAS  PubMed  Google Scholar 

  96. Squires, J.E. et al. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40, 5023–5033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Carlile, T.M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143–146 advance online publication (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Schwartz, S. et al. Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159, 148–162 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Gong, J. et al. LNCediting: a database for functional effects of RNA editing in lncRNAs. Nucleic Acids Res. 45, D79–D84 (2017).

    CAS  PubMed  Google Scholar 

  100. Warren, L. et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7, 618–630 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Picardi, E. et al. Profiling RNA editing in human tissues: towards the inosinome Atlas. Sci. Rep. 5, 14941 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Marcu-Malina, V. et al. ADAR1 is vital for B cell lineage development in the mouse bone marrow. Oncotarget 7, 54370–54379 (2016).

    PubMed  PubMed Central  Google Scholar 

  103. Goldstein, B. et al. A-to-I RNA editing promotes developmental-stage-specific gene and lncRNA expression. Genome Res. 27, 462–470 (2016).

    PubMed  Google Scholar 

  104. Limbach, P.A., Crain, P.F. & McCloskey, J.A. Summary: the modified nucleosides of RNA. Nucleic Acids Res. 22, 2183–2196 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Cao, G., Li, H.-B., Yin, Z. & Flavell, R.A. Recent advances in dynamic m6A RNA modification. Open Biol. 6, 160003 (2016).

    PubMed  PubMed Central  Google Scholar 

  106. Patil, D.P. et al. m(6)A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhao, B.S. et al. m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542, 475–478 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Picardi, E., D'Erchia, A.M., Gallo, A., Montalvo, A. & Pesole, G. Uncovering RNA editing sites in long non-coding RNAs. Front. Bioeng. Biotechnol. 2, 64 (2014).

    PubMed  PubMed Central  Google Scholar 

  109. Levanon, E.Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    CAS  PubMed  Google Scholar 

  110. Bass, B.L. et al. A standardized nomenclature for adenosine deaminases that act on RNA. RNA 3, 947–949 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Liddicoat, B.J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ramaswami, G. & Li, J.B. RADAR: a rigorously annotated database of A-to-I RNA editing. Nucleic Acids Res. 42, D109–D113 (2014).

    CAS  PubMed  Google Scholar 

  113. Poulsen, H., Nilsson, J., Damgaard, C.K., Egebjerg, J. & Kjems, J. CRM1 mediates the export of ADAR1 through a nuclear export signal within the Z-DNA binding domain. Mol. Cell. Biol. 21, 7862–7871 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Eckmann, C.R., Neunteufl, A., Pfaffstetter, L. & Jantsch, M.F. The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell 12, 1911–1924 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nie, Y., Zhao, Q., Su, Y. & Yang, J.-H. Subcellular distribution of ADAR1 isoforms is synergistically determined by three nuclear discrimination signals and a regulatory motif. J. Biol. Chem. 279, 13249–13255 (2004).

    CAS  PubMed  Google Scholar 

  116. Desterro, J.M.P. et al. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 116, 1805–1818 (2003).

    CAS  PubMed  Google Scholar 

  117. Gallo, A. & Locatelli, F. ADARs: allies or enemies? The importance of A-to-I RNA editing in human disease: from cancer to HIV-1. Biol. Rev. Camb. Philos. Soc. 87, 95–110 (2012).

    PubMed  Google Scholar 

  118. Silberberg, G., Lundin, D., Navon, R. & Öhman, M. Deregulation of the A-to-I RNA editing mechanism in psychiatric disorders. Hum. Mol. Genet. 21, 311–321 (2012).

    CAS  PubMed  Google Scholar 

  119. Wang, Q., Khillan, J., Gadue, P. & Nishikura, K. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765–1768 (2000).

    CAS  PubMed  Google Scholar 

  120. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    CAS  PubMed  Google Scholar 

  121. Han, L. et al. The genomic landscape and clinical relevance of A-to-I RNA editing in human cancers. Cancer Cell 28, 515–528 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Fumagalli, D. et al. Principles governing A-to-I RNA editing in the breast cancer transcriptome. Cell Rep. 13, 277–289 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Paz-Yaacov, N. et al. Elevated RNA editing activity is a major contributor to transcriptomic diversity in tumors. Cell Rep. 13, 267–276 (2015).

    CAS  PubMed  Google Scholar 

  124. Salameh, A. et al. PRUNE2 is a human prostate cancer suppressor regulated by the intronic long noncoding RNA PCA3. Proc. Natl. Acad. Sci. USA 112, 8403–8408 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Funabiki, M. et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity 40, 199–212 (2014).

    CAS  PubMed  Google Scholar 

  126. Mannion, N.M. et al. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep. 9, 1482–1494 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–459 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Ivanov, A. et al. Analysis of intron sequences reveals hallmarks of circular RNA biogenesis in animals. Cell Rep. 10, 170–177 (2015).

    CAS  PubMed  Google Scholar 

  129. Wilusz, J.E. Repetitive elements regulate circular RNA biogenesis. Mob. Genet. Elements 5, 1–7 (2015).

    PubMed  Google Scholar 

  130. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    PubMed  PubMed Central  Google Scholar 

  131. Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem. 79, 321–349 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ramaswami, G. et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods 9, 579–581 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Dou, Y. et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci. Rep. 6, 37982 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Motorin, Y. & Helm, M. RNA nucleotide methylation. Wiley Interdiscip. Rev. RNA 2, 611–631 (2011).

    CAS  PubMed  Google Scholar 

  135. Geula, S. et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation. Science 347, 1002–1006 (2015).

    CAS  PubMed  Google Scholar 

  136. Blanco, S. & Frye, M. Role of RNA methyltransferases in tissue renewal and pathology. Curr. Opin. Cell Biol. 31, 1–7 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Batista, P.J. et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells. Cell Stem Cell 15, 707–719 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Klungland, A. & Dahl, J.A. Dynamic RNA modifications in disease. Curr. Opin. Genet. Dev. 26, 47–52 (2014).

    CAS  PubMed  Google Scholar 

  139. Wang, X. et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505, 117–120 (2014).

    PubMed  Google Scholar 

  140. Liu, N. et al. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518, 560–564 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Narayan, P. & Rottman, F.M. An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science 242, 1159–1162 (1988).

    CAS  PubMed  Google Scholar 

  142. Bokar, J.A., Rath-Shambaugh, M.E., Ludwiczak, R., Narayan, P. & Rottman, F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem. 269, 17697–17704 (1994).

    CAS  PubMed  Google Scholar 

  143. Bokar, J.A., Shambaugh, M.E., Polayes, D., Matera, A.G. & Rottman, F.M. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA 3, 1233–1247 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhao, X. et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 24, 1403–1419 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Meyer, K.D. et al. 5′ UTR m(6)A promotes cap-independent translation. Cell 163, 999–1010 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zheng, G. et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49, 18–29 (2013).

    CAS  PubMed  Google Scholar 

  147. Spitale, R.C. et al. Structural imprints in vivo decode RNA regulatory mechanisms. Nature 519, 486–490 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Roost, C. et al. Structure and thermodynamics of N6-methyladenosine in RNA: a spring-loaded base modification. J. Am. Chem. Soc. 137, 2107–2115 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Karikó, K., Buckstein, M., Ni, H. & Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23, 165–175 (2005).

    PubMed  Google Scholar 

  150. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    CAS  PubMed  Google Scholar 

  151. Kawai, T. & Akira, S. Toll-like receptor and RIG-I-like receptor signaling. Ann. NY Acad. Sci. 1143, 1–20 (2008).

    CAS  PubMed  Google Scholar 

  152. Yang, Y. et al. Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27, 626–641 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Legnini, I. et al. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol. Cell 66, 22–37.e9 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Clark, M.B. et al. Genome-wide analysis of long noncoding RNA stability. Genome Res. 22, 885–898 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Chang laboratory for discussions, and J. Tumey for figure artwork. Supported by the US National Institutes of Health (P50HG007735), the Parker Institute for Cancer Immunotherapy, the Scleroderma Research Foundation (H.Y.C.) and the Cancer Research Institute (Irvington Fellowship to A.T.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard Y Chang.

Ethics declarations

Competing interests

H.Y.C. is a founder of Epinomics and a member of its scientific advisory board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Satpathy, A. & Chang, H. Gene regulation in the immune system by long noncoding RNAs. Nat Immunol 18, 962–972 (2017). https://doi.org/10.1038/ni.3771

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3771

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing