Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

CTLA-4: new insights into its biological function and use in tumor immunotherapy

Abstract

The discovery of multiple costimulatory cell surface molecules that influence the course of T cell activation has increased our appreciation of the complexity of the T cell response. It remains clear, however, that CD28 and cytotoxic T lymphocyte antigen 4 (CTLA-4) are the critical costimulatory receptors that determine the early outcome of stimulation through the T cell antigen receptor (TCR). Details of how the T cell integrates TCR stimulation with the costimulatory signals of CD28 and the inhibitory signals of CTLA-4 remain to be established, but unique features of the cell biology of CTLA-4 provide important insights into its function. We summarize here recent findings that suggest a previously unrecognized role for CTLA-4 in the regulation of T cell responses. We also describe preclinical and clinical results that indicate manipulation of CTLA-4 has considerable promise as a strategy for the immunotherapy of cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A model for CTLA-4 trafficking during antigen-specific T cell–APC interactions.
Figure 2: Role played by CTLA-4 in regulating antigen-specific T cell responses.
Figure 3: Modulation of T cell responses to tumors with CTLA-4 blockade.

Similar content being viewed by others

References

  1. Mueller, D.L., Jenkins, M.K. & Schwartz, R.H. Clonal expansion versus functional clonal inactivation: A costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu. Rev. Immunol. 7, 445–480 (1989).

    CAS  PubMed  Google Scholar 

  2. Sharpe, A.H. & Freeman, G.J. The B7-CD28 superfamily. Nature Immunol. 2, 116–126 (2002).

    CAS  Google Scholar 

  3. Brunet, J.F. et al. A new member of the immunoglobulin superfamily–CTLA-4. Nature 328, 267–270 (1987).

    CAS  PubMed  Google Scholar 

  4. Linsley, P.S. et al. CTLA-4 is a second receptor for the B cell activation antigen B7. J. Exp. Med. 174, 561–569 (1991).

    CAS  PubMed  Google Scholar 

  5. Linsley, P.S. et al. Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1, 793–801 (1994).

    CAS  PubMed  Google Scholar 

  6. van der Merwe, P.A., Bodian, D.L., Daenke, S., Linsley, P. & Davis, S.J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J. Exp. Med. 185, 393–403 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Linsley, P.S. et al. Coexpression and functional cooperativity of CTLA-4 and CD28 on activated T lymphocytes. J. Exp. Med. 176, 1595–1604 (1992).

    CAS  PubMed  Google Scholar 

  8. Walunas, T.L. et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity 1, 405–413 (1994).

    CAS  PubMed  Google Scholar 

  9. Krummel, M.F. & Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med. 182, 459–465 (1995).

    CAS  PubMed  Google Scholar 

  10. Kearney, E.R. et al. Antigen-dependent clonal expansion of a trace population of antigen-specific CD4+ T cells in vivo is dependent on CD28 costimulation and inhibited by CTLA-4. J. Immunol. 155, 1033–1036 (1995).

    Google Scholar 

  11. Krummel, M.F., Sullivan, T.J. & Allison, J.P. Superantigen responses and costimulation: CD28 and CTLA-4 have opposing effects on T cell expansion in vitro and in vivo. Int. Immunol. 8, 519–523 (1996).

    CAS  PubMed  Google Scholar 

  12. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  13. Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    CAS  PubMed  Google Scholar 

  14. Chambers, C.A., Sullivan, T.J. & Allison, J.P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7, 885–895 (1997).

    CAS  PubMed  Google Scholar 

  15. Lindsten, T. et al. Characterization of CTLA-4 structure and expression on human T cells. J. Immunol. 151, 3489–3499 (1993).

    CAS  PubMed  Google Scholar 

  16. Brunner, M.C. et al. CTLA-4 mediated inhibition of early events of T cell proliferation. J. Immunol. 162, 5813–5820 (1999).

    CAS  PubMed  Google Scholar 

  17. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    CAS  PubMed  Google Scholar 

  18. Lee, K.H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    CAS  PubMed  Google Scholar 

  19. Egen, J.G. & Allison, J.P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity 16, 23–35 (2002).

    CAS  PubMed  Google Scholar 

  20. Schneider, H. et al. Cytolytic T lymphocyte-associated antigen-4 and the TCRζ/CD3 complexes, but not CD28, interact with clathrin adaptor complexes AP-1 and AP-2. J. Immunol. 163, 1868–1879 (1999).

    CAS  PubMed  Google Scholar 

  21. Oki, S., Kohsaka, T. & Azuma, M. Augmentation of CTLA-4 expression by wortmannin: involvement of lysosomal sorting properties of CTLA-4. Int. Immunol. 11, 1563–1571 (1999).

    CAS  PubMed  Google Scholar 

  22. Iida, T. et al. Regulation of cell surface expression of CTLA-4 by secretion of CTLA-4- containing lysosomes upon activation of CD4+ T cells. J. Immunol. 165, 5062–5068 (2000).

    CAS  PubMed  Google Scholar 

  23. Blott, E.J. & Griffiths, G.M. Secretory lysosomes. Nature Rev. Mol. Cell Biol. 3, 122–31 (2002).

    CAS  Google Scholar 

  24. Truitt, K.E., Hicks, C.M. & Imboden, J.B. Stimulation of CD28 triggers an association between CD28 and phospatidylinositol 3-kinase in Jurkat T cells. J. Exp. Med. 179, 1071–1076 (1994).

    CAS  PubMed  Google Scholar 

  25. Prasad, K.V. et al. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc. Natl. Acad. Sci. USA 91, 2834–2838 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Schneider, H., Prasad, V.S., Shoelson, S.E. & Rudd, C.E. CTLA-4 binding to the lipid kinase phosphatidylinositol 3-kinase in T cells. J. Exp. Med. 181, 351–355 (1995).

    CAS  PubMed  Google Scholar 

  27. Leung, H.T., Bradshaw, J., Cleaveland, J.S. & Linsley, P.S. Cytotoxic T lymphocyte-associated molecule-4, a high avidity receptor for CD80 and CD86, contains an intracellular localization motif in its cytoplasmic tail. J. Biol. Chem. 270, 25107–25114 (1995).

    CAS  PubMed  Google Scholar 

  28. Shiratori, T. et al. Tyrosine phosphorylation controls internalization of CTLA-4 by regulating its interaction with clathrin-associated adaptor complex AP-2. Immunity 6, 583–589 (1997).

    CAS  PubMed  Google Scholar 

  29. Chuang, E. et al. Interaction of CTLA-4 with the clathrin-associated protein AP50 results in ligand-independent endocytosis that limits cell surface expression. J. Immunol. 159, 144–151 (1997).

    CAS  PubMed  Google Scholar 

  30. Zhang, Y. & Allison, J.P. Interaction of CTLA-4 with AP50, a clathrin-coated pit adaptor protein. Proc. Natl. Acad. Sci. USA 94, 9273–9278 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Bradshaw, J.D. et al. Interaction of the cytoplasmic tail of CTLA-4 (CD152) with a clathrin- associated protein is negatively regulated by tyrosine phosphorylation. Biochemistry 36, 15975–15982 (1997).

    CAS  PubMed  Google Scholar 

  32. Kupfer, A., Swain, S.L. & Singer, S.J. The specific direct interaction of helper T cells and antigen-presenting B cells. II. Reorientation of the microtubule organizing center and reorganization of the membrane-associated cytoskeleton inside the bound helper T cells. J. Exp. Med. 165, 1565–1580 (1987).

    CAS  PubMed  Google Scholar 

  33. Linsley, P.S. et al. Intracellular trafficking of CTLA-4 and focal localization towards sites of TCR engagement. Immunity 4, 535–543 (1996).

    CAS  PubMed  Google Scholar 

  34. Alegre, M.L., Frauwirth, K.A. & Thompson, C.B. T-cell regulation by CD28 and CTLA-4. Nature Rev. Immunol. 1, 220–228 (2001).

    CAS  Google Scholar 

  35. Schwartz, J.-C.D., Zhang, X., Nathenson, S.G. & Almo, S.C. Structural mechanisms of costimulation. Nature Immunol. 2, 427–434 (2002).

    Google Scholar 

  36. Krummel, M.F. & Allison, J.P. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J. Exp. Med. 183, 2533–2540 (1996).

    CAS  PubMed  Google Scholar 

  37. Walunas, T.L., Bakker, C.Y. & Bluestone, J.A. CTLA-4 ligation blocks CD28-dependent T cell activation. J. Exp. Med. 183, 2541–2550 (1996).

    CAS  PubMed  Google Scholar 

  38. Greenwald, R.J. et al. CTLA-4 regulates cell cycle progression during a primary immune response. Eur. J. Immunol. 32, 366–373 (2002).

    CAS  PubMed  Google Scholar 

  39. Bachmann, M.F., Köhler, G., Ecabert, B., Mak, T.W. & Kopf, M. Cutting edge: lymphoproliferative disease in the absence of CTLA-4 is not T cell autonomous. J. Immunol. 163, 1128–1131 (1999).

    CAS  PubMed  Google Scholar 

  40. Bachmann, M.F. et al. Normal pathogen-specific immune responses mounted by CTLA-4-deficient T cells: a paradigm reconsidered. Eur. J. Immunol. 31, 450–458 (2001).

    CAS  PubMed  Google Scholar 

  41. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    CAS  PubMed  Google Scholar 

  42. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Sutmuller, R.P.M. et al. Synergism of CTLA-4 blockade and depletion of CD25+ regulatory T cells in anti-tumor therapy reveals alternative pathways for suppression of auto-reactive CTL responses. J. Exp. Med. 194, 823–832 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Greenwald, R.J., Boussiotis, V.A., Lorsbach, R.B., Abbas, A.K. & Sharpe, A. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    CAS  PubMed  Google Scholar 

  46. Chambers, C.A., Kuhns, M.S., Egen, J.G. & Allison, J.P. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 19, 565–594 (2001).

    CAS  PubMed  Google Scholar 

  47. Chambers, C.A. et al. The role of CTLA-4 in the regulation and initiation of T cell responses. Immunol. Rev. 153, 27–46 (1996).

    CAS  PubMed  Google Scholar 

  48. Fallarino, F., Fields, P.E. & Gajewski, T.F. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J. Exp. Med. 188, 205–210 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gajewski, T.F., Fallarino, F., Fields, P.E., Rivas, F. & Alegre, M.L. Absence of CTLA-4 lowers the activation threshold of primed CD8+ TCR-transgenic T cells: lack of correlation with Src homology domain 2-containing protein tyrosine phosphatase. J. Immunol. 166, 3900–3907 (2001).

    CAS  PubMed  Google Scholar 

  50. Chambers, C.A., Kuhns, M.S. & Allison, J.P. Cytotoxic T lymphocyte antigen-4 (CTLA-4) regulates primary and secondary peptide-specific CD4+ T cell responses. Proc. Natl. Acad. Sci. USA 96, 8603–8608 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tivol, E.A. et al. CTLA4Ig prevents lymphoproliferation and fatal multiorgan tissue destruction in CTLA-4-deficient mice. J. Immunol. 158, 5091–5094 (1997).

    CAS  PubMed  Google Scholar 

  52. Mandelbrot, D.A., McAdam, A.J. & Sharpe, A.H. B7-1 or B7-2 is required to produce the lymphoproliferative phenotype in mice lacking cytotoxic T lymphocyte-associated antigen 4 (CTLA-4). J. Exp. Med. 189, 435–440 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Masteller, E.L., Chuang, E., A.C., M., Reiner, S.L. & Thompson, C.B. Structural analysis of CTLA-4 function in vivo. J. Immunol. 164, 5319–5327 (2000).

    CAS  PubMed  Google Scholar 

  54. Doyle, A.M. et al. Induction of cytotoxic T lymphocyte antigen 4 (CTLA-4) restricts clonal expansion of helper T cells. J. Exp. Med. 194, 893–902 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Salomon, B. & Bluestone, J.A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    CAS  PubMed  Google Scholar 

  56. Perez, V.L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    CAS  PubMed  Google Scholar 

  57. Murphy, M.L., Cotterell, S.E., Gorak, P.M., Engwerda, C.R. & Kaye, P.M. Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani. J. Immunol. 161, 4153–4160 (1998).

    CAS  PubMed  Google Scholar 

  58. McCoy, K., Camberis, M. & Gros, G.L. Protective immunity to nematode infection is induced by CTLA-4 blockade. J. Exp. Med. 186, 183–187 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kuhns, M.S., Epshteyn, V., Sobel, R.A. & Allison, J.P. CTLA-4 regulates the size, function, and reactivity of a primed pool of T cells. Proc. Natl. Acad. Sci. USA 97, 12711–12716 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Busch, D.K. & Pamer, E.G. T cell affinity maturation by selective expansion during infection. J. Exp. Med. 189, 701–709 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Savage, P.A., Boniface, J.J. & Davis, M.M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    CAS  PubMed  Google Scholar 

  62. Butz, E.A. & Bevan, M.J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bousso, P., Levraud, J.P., Kourilsky, P. & Abastado, J.P. The composition of a primary T cell response is largely determined by the timing of recruitment of individual T cell clones. J. Exp. Med. 189, 1591–1600 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kedl, R.M. et al. T cells compete for access to antigen-bearing antigen-presenting cells. J. Exp. Med. 192, 1105–1113 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Rogers, P.R. & Croft, M. Peptide dose, affinity, and time of differentiation can contribute to the Th1/Th2 cytokine balance. J. Immunol. 163, 1205–1213 (1999).

    CAS  PubMed  Google Scholar 

  66. Malherbe, L. et al. Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major. Immunity 13, 771–782 (2000).

    CAS  PubMed  Google Scholar 

  67. Hurwitz, A.A., Sullivan, T.J., Sobel, R.A. & Allison, J.P. Cytotoxic T lymphocyte antigen-4 (CTLA-4) limits the expansion of encephalitogenic T cells in experimental autoimmune encephalomyelitis (EAE)-resistant BALB/c mice. Proc. Natl. Acad. Sci. USA 99, 3013–3017 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Vanasek, T.L., Khoruts, A., Zell, T. & Mueller, D.L. Antagonistic roles for CTLA-4 and the mammalian target of rapamycin in the regulation of clonal anergy: enhanced cell cycle progression promotes recall antigen responsiveness. J. Immunol. 167, 5636–5644 (2001).

    CAS  PubMed  Google Scholar 

  69. Chen, L. et al. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71, 1093–1102 (1992).

    CAS  PubMed  Google Scholar 

  70. Townsend, S. & Allison, J.P. Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259, 368–370 (1993).

    CAS  PubMed  Google Scholar 

  71. Huang, A.Y. et al. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264, 961–965 (1994).

    CAS  PubMed  Google Scholar 

  72. Leach, D., Krummel, M. & Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    CAS  PubMed  Google Scholar 

  73. Kwon, E.D. et al. Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc. Natl. Acad. Sci. USA 94, 8099–8103 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, Y. et al. Enhanced induction of antitumor T-cell responses by cytotoxic T lymphocyte associated molecule-4 blockade: The effect is manifested only at the restricted tumor-bearing stages. Cancer Res. 57, 4036–4041 (1997).

    CAS  PubMed  Google Scholar 

  75. Shrikant, P., Khoruts, A. & Mescher, M.F. CTLA-4 blockade reverses CD8+ T cell tolerance to tumor by a CD4+ T cell and IL-2 dependent mechanism. Immunity 11, 483–493 (1999).

    CAS  PubMed  Google Scholar 

  76. Sotomayor, E.M., Borrello, I.M., Tubb, E., Allison, J.P. & Levitsky, H.I. In vivo blockade of CTLA-4 enhances the priming of responsive T-cells but fails to prevent the induction of tumor antigen-specific tolerance. Proc. Natl. Acad. Sci. USA 96, 11476–11481 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Hurwitz, A.A. et al. in Cytotoxic cells: basic mechanisms and medical applications (eds. Sitovsky, M. V. & Henkart, P. A.) 385–393 (Lippincott Williams & Wilkins, Philadelphia, PA, 1999).

    Google Scholar 

  78. Hurwitz, A.A., Yu, T.F., Leach, D.R. & Allison, J.P. CTLA-4 blockade synergizes with tumor-derived GM-CSF for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. USA 95, 10067–10071 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. van Elsas, A., Hurwitz, A.A. & Allison, J.P. Combination immunotherapy of B16 melanoma using anti–CTLA-4 and GM-CSF producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J. Exp. Med. 190, 355–366 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Dranoff, G. et al. Vaccination with irradiated tumor cells engineered to secrete GM-CSF stimulates potent, specific, and long lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90, 3539–3543 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Hurwitz, A.A. et al. Combination immunotherapy of primary prostate cancer in a transgenic model using CTLA-4 blockade. Cancer Res. 60, 2444–2448 (2000).

    CAS  PubMed  Google Scholar 

  82. Rosenberg, S.A. & White, D.E. Vitiligo in patients with melanoma: normal tissue antigens can be targets for cancer immunotherapy. J. Immunother. EmphasisTumor Immunol. 19, 81–84 (1996).

    CAS  Google Scholar 

  83. van Elsas, A. et al. Elucidating the autoimmune and anti-tumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 (CTLA-4) blockade in combination with a B16 melanoma vaccine: Comparison of prophylaxis and therapy. J. Exp. Med. 194, 427–438 (2001).

    Google Scholar 

  84. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Karandikar, N.J., Vanderlugt, C.L., Walunas, T.L., Miller, S.D. & Bluestone, J.A. CTLA-4: A negative regulator of autoimmune disease. J. Exp. Med. 184, 783–788 (1996).

    CAS  PubMed  Google Scholar 

  86. Perrin, P.J., Maldonado, J.H., Davis, T.A., June, C.H. & Racke, M.K. CTLA-4 blockade enhances clinical disease and cytokine production during experimental allergic encephalomyelitis. J. Immunol. 157, 1333–1336 (1996).

    CAS  PubMed  Google Scholar 

  87. Hurwitz, A.A., Sullivan, T.J., Krummel, M.F., Sobel, R.A. & Allison, J.P. Specific blockade of CTLA-4/B7 interactions results in exacerbated clinical and histologic disease in an actively-induced model of experimental allergic encephalomyelitis. J. Neuroimmunol. 73, 57–62 (1997).

    PubMed  Google Scholar 

  88. Lühder, F., Höglund, P., Allison, J.P., Benoist, C. & Mathis, D. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J. Exp. Med. 187, 427–432 (1998).

    PubMed  PubMed Central  Google Scholar 

  89. Mokyr, M.B., Kalinichenko, T., Gorelik, L. & Bluestone, J.A. Realization of the therapeutic potential of CTLA-4 blockade in low-dose chemotherapy-treated tumor-bearing mice. Cancer Res. 58, 5301–5304 (1998).

    CAS  PubMed  Google Scholar 

  90. Mercader, M. et al. T cell infiltration of the prostate induced by androgen withdrawal in patients with prostate cancer. Proc. Natl. Acad. Sci. USA 98, 14565–14570 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Savage and J. Engelhardt for helpful discussions and critical reading of the manuscript and T. Sullivan, M. Fasso, C. Chambers, A. Hurwitz, A. van Elsas and E. Kwon for helpful discussions. Supported by the Howard Hughes Medical Institute and grants from the NIH (NCI CA40041 and CA57986) and CaPCURE (J. P. A.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Allison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egen, J., Kuhns, M. & Allison, J. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat Immunol 3, 611–618 (2002). https://doi.org/10.1038/ni0702-611

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0702-611

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing