Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inducible IL-2 production by dendritic cells revealed by global gene expression analysis

Abstract

Dendritic cells (DCs) are strong activators of primary T cell responses. Their priming ability is acquired upon encounter with maturation stimuli. To identify the genes that are differentially expressed upon maturation induced by exposure to Gram-negative bacteria, a kinetic study of DC gene expression was done with microarrays representing 11,000 genes and ESTs (expressed sequence tags). Approximately 3000 differentially expressed transcripts were identified. We found that functional interleukin 2 (IL-2) mRNA, which gave rise to IL-2 production, was transiently up-regulated at early time-points after bacterial encounter. In contrast, macrophages did not produce IL-2 upon bacterial stimulation. Thus, IL-2 is an additional key cytokine that confers unique T cell stimulatory capacity to DCs.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmentally synchronized DCs.
Figure 2: PCA analysis.
Figure 3: Transcription response of DCs to bacteria.
Figure 4: IL-2 expression by DCs.
Figure 5: DC-derived IL-2 was a key molecule for T cell activation.

Similar content being viewed by others

References

  1. Banchereau, R. & Steinman R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  2. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin-4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  Google Scholar 

  3. Winzler, C. et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J. Exp. Med. 185, 317–328 (1997).

    Article  CAS  PubMed Central  Google Scholar 

  4. Rescigno, M. et al. Bacteria-induced neo-biosynthesis, stabilization, and surface expression of functional class I molecules in mouse dendritic cells. Proc. Natl Acad. Sci. USA 95, 5229–5234 (1998).

    Article  CAS  Google Scholar 

  5. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811(2000).

    Article  CAS  Google Scholar 

  6. Lutz, M. B. et al. An advance culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Meth. 223, 77–92 (1999).

    Article  CAS  Google Scholar 

  7. Pierre, P. et al. Development regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787–792 (1997).

    Article  CAS  Google Scholar 

  8. Rodriguez, A. et al. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nature Cell Biol. 1, 362–368 (1999).

    Article  CAS  Google Scholar 

  9. Rescigno, M. et al. Fas engagement induces the maturation of dendritic cells (DCs), the release of interleukin (IL)-1β, and the production of interferon γ in the absence of IL-12 during DC-T cell cognate interaction. A new role for fas ligand in inflammatory responses. J. Exp. Med. 192, 1661–1668 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  10. Singh-Jasuja, H. et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J. Exp. Med. 191, 1965–1974 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  11. Fernandez, N. C. et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Med. 5, 405–411 (1999).

    Article  CAS  Google Scholar 

  12. Raychaudhuri, S., Stuart, J. M. & Altman, R. B. Principal components analysis to summarize microarray experiments: application to sporulation time series. Proceedings of the Pacific Symposium on Biocomputing 455–466 (2000).

  13. Tamayo, P. et al. Interpreting pattern of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc. Natl Acad. Sci. USA 96, 2907–2912 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  14. Lockhart, D. J. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 14, 1675–1680 (1996).

    Article  CAS  Google Scholar 

  15. Staudt, L. M. & Brown, P. O. Genomic views of the immune system. Annu. Rev. Immunol. 18, 829–859 (2000).

    Article  CAS  Google Scholar 

  16. Langenkamp, A., Messi, M., Lanzavecchia, A. & Sallusto, F. Kinetics of dendritic cell activation: impact on priming of Th1, Th2 and nonpolarized T cells. Nature Immunol. 1, 311–316 (2000).

    Article  CAS  Google Scholar 

  17. Sallusto, F. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur. J. Immunol. 29, 1617–1625 (1999).

    Article  CAS  Google Scholar 

  18. Rescigno, M. et al. Dendritic cell survival and maturation are regulated by different signaling pathways. J. Exp. Med. 188, 2175–2180 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  19. Bustelo, X. R. Regulatory and signaling properties of the Vav family. Mol. Cell. Biol. 20, 1461–1477 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  20. Kramer, S. et al. Thymic selection and peptide-induced activation of T cell receptor-transgenic CD8 T cells in interleukin-2-deficient mice. Eur. J. Immunol. 24, 2317–2322 (1994).

    Article  CAS  Google Scholar 

  21. Teague, T. K. et al. Activation changes the spectrum but not the diversity of genes expressed by T cells. Proc. Natl Acad. Sci. USA 96, 12691–12696 (1999).

    Article  CAS  Google Scholar 

  22. Borisy, G. G. & Svitkina, T. M. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12, 104–112 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  23. Movilla, N. & Bustelo, X. N. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoprotein. Mol. Cell. Biol. 19, 7870–7885 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  24. Klein, L. et al. Shaping of the autoreactive T-cell repertoire by a splice variant of self protein expressed in thymic epithelial cells. Nature Med. 6, 56–61 (2000).

    Article  CAS  Google Scholar 

  25. Cella, M. et al. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature 388, 782–787 (1997).

    Article  CAS  Google Scholar 

  26. Lutz, M. B. et al. Intracellular routes and selective retention of antigens in mildly acidic cathepsin D/lysosome-associated membrane protein-1/MHC class II-positive vesicles in immature dendritic cells. J. Immunol. 159, 3707–3716 (1997).

    CAS  PubMed  Google Scholar 

  27. Schuurhuis, D. H. et al. Immature dendritic cells acquire CD8+ cytotoxic T lymphocyte priming capacity upon activation by T helper cell-independent or -dependent stimuli. J. Exp. Med. 192, 145–150 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  28. Kronin, V., Vremec, D. & Shortman, K. Does the IL-2 receptor α chain induced on dendritic cells have a biological function? Int. Immunol. 10, 237–240 (1998).

    Article  CAS  Google Scholar 

  29. Zeller, J. C. et al. Induction of CD4+ T cell alloantigen-specific hyporesponsiveness by IL-10 and TGF-β. J. Immunol. 163, 3684–3691 (1999).

    CAS  PubMed  Google Scholar 

  30. Biron, C. A. et al. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu. Rev. Immunol. 17, 189–220 (1999).

    Article  CAS  Google Scholar 

  31. Steinman R. M. et al. Dendritic cells of the mouse: identification and characterization. J Invest. Dermatol. 75, 14–16 (1980).

    Article  CAS  Google Scholar 

  32. Wodicka, L. et al. Genome-wide expression monitoring in Saccharomyces cerevisiae. Nature Biotechnol. 15, 1359–1367 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Schimpl for IL-2−/− mice, D. Grdic for helpful discussions, E. Bottani for manuscript editing and Affymetrix for technical support. Supported by the EC Grant QLG1-1999-00202-TAGAPO, the CNR Target Project on Biotechnology, the Italian Association for Cancer Research (AIRC), Biopolo, Novuspharma and Lombardia Region.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Ricciardi-Castagnoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Granucci, F., Vizzardelli, C., Pavelka, N. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat Immunol 2, 882–888 (2001). https://doi.org/10.1038/ni0901-882

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-882

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing