Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The nervous system and innate immunity: the neuropeptide connection

Abstract

Many neuropeptides and peptide hormones are very similar to antimicrobial peptides in their amino acid composition, amphipathic design, cationic charge and size. Their antimicrobial activities suggest they may also be directly involved in innate defense. Here we discuss recent advances in understanding how the mammalian nervous system, equipped with neuropeptides and peptide hormones with potent antimicrobial properties, might directly defend the host from microbial assault. As examples, we have chosen five well described, locally produced neuropeptides that may serve a previously unrecognized, direct antimicrobial, innate immune function in four anatomical sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NK1-induced antimicrobial peptide activity in the gingival sulcus of the oral cavity.
Figure 2: NPY-producing cells in the olfactory system.

Similar content being viewed by others

References

  1. Elenkov, I.J., Wilder, R.L., Chrousos, G.P. & Vizi, E.S. The sympathetic nerve—an integrative interface between two supersystems: the brain and the immune system. Pharmacol. Rev. 52, 595–638 (2000).

    CAS  PubMed  Google Scholar 

  2. Tracey, K.J. The inflammatory reflex. Nature 420, 853–859 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen, M.D., Julien, J.P. & Rivest, S. Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat. Rev. Neurosci. 3, 216–227 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Steinman, L. Elaborate interactions between the immune and nervous systems. Nat. Immunol. 5, 575–581 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Zasloff, M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84, 5449–5453 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Benson, B.J. & Hadley, M.E. In vitro characterization of adrenergic receptors controlling skin gland secretion in two anurans, Rana pipiens and Xenopus laevis. Comp. Biochem. Physiol. 30, 857–864 (1969).

    Article  CAS  PubMed  Google Scholar 

  7. Simmaco, M., Mignogna, G. & Barra, D. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47, 435–450 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Tossi, A. et al. Antimicrobial Sequences Database. <http://www.bbcm.univ.trieste.it/~tossi/pag5.htm> (2005).

  9. Ganz, T. Defensins: antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3, 710–720 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Brogden, K.A., Ackermann, M., McCray, P.B. & Tack, B.F. Antimicrobial peptides in animals and their role in host defences. Int. J. Antimicrob. Agents 22, 465–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Vizioli, J. & Salzet, M. Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol. Sci. 23, 494–496 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Tjabringa, G.S. et al. The antimicrobial peptide LL-37 activates innate immunity at the airway epithelial surface by transactivation of the epidermal growth factor receptor. J. Immunol. 171, 6690–6696 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 75, 39–48 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. Gallo, R.L., Murakami, M., Ohtake, T. & Zaiou, M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J. Allergy Clin. Immunol. 110, 823–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Yang, D. et al. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J. Leukoc. Biol. 74, 448–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Chaly, Y.V. et al. Neutrophil α-defensin human neutrophil peptide modulates cytokine production in human monocytes and adhesion molecule expression in endothelial cells. Eur. Cytokine Netw. 11, 257–266 (2000).

    CAS  PubMed  Google Scholar 

  18. Yang, D., Biragyn, A., Hoover, D.M., Lubkowski, J. & Oppenheim, J.J. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu. Rev. Immunol. 22, 181–215 (2004).

    Article  PubMed  CAS  Google Scholar 

  19. Cole, A.M. et al. Cutting edge: IFN-inducible ELR-CXC chemokines display defensin-like antimicrobial activity. J. Immunol. 167, 623–627 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Tang, Y.Q., Yeaman, M.R. & Selsted, M.E. Antimicrobial peptides from human platelets. Infect. Immun. 70, 6524–6533 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang, F.Y. et al. Thrombocytopenia in liver transplant recipients: predictors, impact on fungal infections, and role of endogenous thrombopoietin. Transplantation 69, 70–75 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Maxwell, A.I., Morrison, G.M. & Dorin, J.R. Rapid sequence divergence in mammalian β-defensins by adaptive evolution. Mol. Immunol. 40, 413–421 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Stolzenberg, E.D., Anderson, G.M., Ackermann, M.R., Whitlock, R.H. & Zasloff, M. Epithelial antibiotic induced in states of disease. Proc. Natl Acad. Sci. USA 94, 8686–8690 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Hao, H.N., Zhao, J., Lotoczky, G., Grever, W.E. & Lyman, W.D. Induction of human β-defensin-2 expression in human astrocytes by lipopolysaccharide and cytokines. J. Neurochem. 77, 1027–1035 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Nakayama, K., Okamura, N., Arai, H., Sekizawa, K. & Sasaki, H. Expression of human β-defensin-1 in the choroid plexus. Ann. Neurol. 45, 685 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Couillault, C. et al. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat. Immunol. 5, 488–494 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Lundy, F.T. & Linden, G.J. Neuropeptides and neurogenic mechanisms in oral and periodontal inflammation. Crit. Rev. Oral Biol. Med. 15, 82–98 (2004).

    Article  PubMed  Google Scholar 

  28. Scholzen, T. et al. Neuropeptides in the skin: interactions between the neuroendocrine and the skin immune systems. Exp. Dermatol. 7, 81–96 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Lever, I.J. et al. Basal and activity-induced release of substance P from primary afferent fibres in NK1 receptor knockout mice: evidence for negative feedback. Neuropharmacology 45, 1101–1110 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Pinter, E., Than, M., Chu, D.Q., Fogg, C. & Brain, S.D. Interaction between interleukin 1β and endogenous neurokinin 1 receptor agonists in mediating plasma extravasation and neutrophil accumulation in the cutaneous microvasculature of the rat. Neurosci. Lett. 318, 13–16 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Olerud, J.E. et al. Neutral endopeptidase expression and distribution in human skin and wounds. J. Invest. Dermatol. 112, 873–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Kowalska, K., Carr, D.B. & Lipkowski, A.W. Direct antimicrobial properties of substance P. Life Sci. 71, 747–750 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Kennedy, W.R., Wendelschafer-Crabb, G. & Johnson, T. Quantitation of epidermal nerves in diabetic neuropathy. Neurology 47, 1042–1048 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. National Diabetes Advisory Board. NIH Publication 81:2284. (National Diabetes Advisory Board, Bethesda, Maryland, 1980).

  35. Gibran, N.S. et al. Diminished neuropeptide levels contribute to the impaired cutaneous healing response associated with diabetes mellitus. J. Surg. Res. 108, 122–128 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Dale, B.A. et al. Localized antimicrobial peptide expression in human gingiva. J. Periodontal Res. 36, 285–294 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Kido, M.A., Yamaza, T., Goto, T. & Tanaka, T. Immunocytochemical localization of substance P neurokinin-1 receptors in rat gingival tissue. Cell Tissue Res. 297, 213–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Lotz, M., Vaughan, J.H. & Carson, D.A. Effect of neuropeptides on production of inflammatory cytokines by human monocytes. Science 241, 1218–1221 (1988).

    Article  CAS  PubMed  Google Scholar 

  39. Sabbadini, E. & Berczi, I. The submandibular gland: a key organ in the neuro-immuno-regulatory network? Neuroimmunomodulation 2, 184–202 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Mathews, M. et al. Production of β-defensin antimicrobial peptides by the oral mucosa and salivary glands. Infect. Immun. 67, 2740–2745 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Putsep, K., Carlsson, G., Boman, H. & Andersson, M. Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360, 1144–1149 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Shimizu, M., Shigeri, Y., Tatsu, Y., Yoshikawa, S. & Yumoto, N. Enhancement of antimicrobial activity of neuropeptide Y by N-terminal truncation. Antimicrob. Agents Chemother. 42, 2745–2746 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, Q. et al. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 39, 147–161 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. Bedoui, S. et al. Relevance of neuropeptide Y for the neuroimmune crosstalk. J. Neuroimmunol. 134, 1–11 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hansel, D.E., Eipper, B.A. & Ronnett, G.V. Neuropeptide Y functions as a neuroproliferative factor. Nature 410, 940–944 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Ubink, R., Calza, L. & Hokfelt, T. 'Neuro'-peptides in glia: focus on NPY and galanin. Trends Neurosci. 26, 604–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  47. Ubink, R. & Hokfelt, T. Expression of neuropeptide Y in olfactory ensheathing cells during prenatal development. J. Comp. Neurol. 423, 13–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Fukushi, H. et al. A hamster model of equine herpesvirus 9 induced encephalitis. J. Neurovirol. 6, 314–319 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Barthold, S.W. Olfactory neural pathway in mouse hepatitis virus nasoencephalitis. Acta Neuropathol. (Berl.) 76, 502–506 (1988).

    Article  CAS  Google Scholar 

  50. van Ginkel, F.W. et al. Pneumococcal carriage results in ganglioside-mediated olfactory tissue infection. Proc. Natl. Acad. Sci. USA 100, 14363–14367 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Andrault, J.B., Gaillard, I., Giorgi, D. & Rouquier, S. Expansion of the BPI family by duplication on human chromosome 20: characterization of the RY gene cluster in 20q11.21 encoding olfactory transporters/antimicrobial-like peptides. Genomics 82, 172–184 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Bingle, C.D. et al. Phylogenetic and evolutionary analysis of the PLUNC gene family. Protein Sci. 13, 422–430 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Elsbach, P. & Weiss, J. Role of the bactericidal/permeability-increasing protein in host defence. Curr. Opin. Immunol. 10, 45–49 (1998).

    Article  CAS  PubMed  Google Scholar 

  54. Sung, Y.K. et al. Plunc, a member of the secretory gland protein family, is up-regulated in nasal respiratory epithelium after olfactory bulbectomy. J. Biol. Chem. 277, 12762–12769 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Vouldoukis, I., Shai, Y., Nicolas, P. & Mor, A. Broad spectrum antibiotic activity of the skin-PYY. FEBS Lett. 380, 237–240 (1996).

    Article  CAS  PubMed  Google Scholar 

  56. Eto, T., Kato, J. & Kitamura, K. Regulation of production and secretion of adrenomedullin in the cardiovascular system. Regul. Pept. 112, 61–69 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Cameron, V.A. & Fleming, A.M. Novel sites of adrenomedullin gene expression in mouse and rat tissues. Endocrinology 139, 2253–2264 (1998).

    Article  CAS  PubMed  Google Scholar 

  58. Martinez, A., Hodge, D.L., Garayoa, M., Young, H.A. & Cuttitta, F. Alternative splicing of the proadrenomedullin gene results in differential expression of gene products. J. Mol. Endocrinol. 27, 31–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. McLatchie, L.M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).

    Article  CAS  PubMed  Google Scholar 

  60. Born, W., Muff, R. & Fischer, J.A. Functional interaction of G protein-coupled receptors of the adrenomedullin peptide family with accessory receptor-activity-modifying proteins (RAMP). Microsc. Res. Tech. 57, 14–22 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Zaks-Zilberman, M., Salkowski, C.A., Elsasser, T., Cuttitta, F. & Vogel, S.N. Induction of adrenomedullin mRNA and protein by lipopolysaccharide and paclitaxel (Taxol) in murine macrophages. Infect. Immun. 66, 4669–4675 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Allaker, R.P., Zihni, C. & Kapas, S. An investigation into the antimicrobial effects of adrenomedullin on members of the skin, oral, respiratory tract and gut microflora. FEMS Immunol. Med. Microbiol. 23, 289–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  63. Kapas, S. et al. Adrenomedullin expression in pathogen-challenged oral epithelial cells. Peptides 22, 1485–1489 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Allaker, R.P. & Kapas, S. Adrenomedullin and mucosal defence: interaction between host and microorganism. Regul. Pept. 112, 147–152 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Marutsuka, K. et al. Adrenomedullin and proadrenomudullin N-terminal 20 peptide (PAMP) are present in human colonic epithelia and exert an antimicrobial effect. Exp. Physiol. 86, 543–545 (2001).

    Article  CAS  PubMed  Google Scholar 

  66. Muller, F.B. et al. Adrenomedullin: expression and possible role in human skin and hair growth. Br. J. Dermatol. 148, 30–38 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Martinez, A. et al. Expression of adrenomedullin and its receptor in normal and malignant human skin: a potential pluripotent role in the integument. Endocrinology 138, 5597–5604 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Lundy, F.T. et al. Adrenomedullin in gingival crevicular fluid in periodontal health and disease. J. Dent. Res. 80, 1176 (2001).

    Google Scholar 

  69. Elsasser, T.H. et al. Underlying disease stress augments plasma and tissue adrenomedullin (AM) responses to endotoxin: colocalized increases in AM and inducible nitric oxide synthase within pancreatic islets. Endocrinology 140, 5402–5411 (1999).

    Article  CAS  PubMed  Google Scholar 

  70. Cutuli, M., Cristiani, S., Lipton, J.M. & Catania, A. Antimicrobial effects of α-MSH peptides. J. Leukoc. Biol. 67, 233–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Wikberg, J.E. et al. New aspects on the melanocortins and their receptors. Pharmacol. Res. 42, 393–420 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Taylor, A.W., Yee, D.G., Nishida, T. & Namba, K. Neuropeptide regulation of immunity. The immunosuppressive activity of α-melanocyte-stimulating hormone (α-MSH). Ann. NY Acad. Sci. 917, 239–247 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Catania, A., Airaghi, L., Colombo, G. & Lipton, J.M. α-melanocyte-stimulating hormone in normal human physiology and disease states. Trends Endocrinol. Metab. 11, 304–308 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Getting, S.J. Melanocortin peptides and their receptors: new targets for anti-inflammatory therapy. Trends Pharmacol. Sci. 23, 447–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Lipton, J.M., Catania, A. & Ichiyama, T. Marshaling the anti-inflammatory influence of the neuroimmunomodulator α-MSH. News Physiol. Sci. 15, 192–195 (2000).

    CAS  PubMed  Google Scholar 

  76. Ichiyama, T., Sato, S., Okada, K., Catania, A. & Lipton, J.M. The neuroimmunomodulatory peptide α-MSH. Ann. NY Acad. Sci. 917, 221–226 (2000).

    Article  CAS  PubMed  Google Scholar 

  77. Chakraborty, A.K. et al. UV light and MSH receptors. Ann. NY Acad. Sci. 885, 100–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  78. Bayerl, C., Lauk, J., Moll, I. & Jung, E.G. Immunohistochemical characterization of HSP, α-MSH, Merkel cells and neuronal markers in acute UV dermatitis and acute contact dermatitis in vivo. Inflamm. Res. 46, 409–411 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Luger, T.A., Scholzen, T.E., Brzoska, T. & Bohm, M. New insights into the functions of α-MSH and related peptides in the immune system. Ann. NY Acad. Sci. 994, 133–140 (2003).

    Article  CAS  PubMed  Google Scholar 

  80. Salzet, M. & Tasiemski, A. Involvement of pro-enkephalin-derived peptides in immunity. Dev. Comp. Immunol. 25, 177–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Metz-Boutigue, M.H., Kieffer, A.E., Goumon, Y. & Aunis, D. Innate immunity: involvement of new neuropeptides. Trends Microbiol. 11, 585–592 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Behar, O., Ovadia, H., Polakiewicz, R.D. & Rosen, H. Lipopolysaccharide induces proenkephalin gene expression in rat lymph nodes and adrenal glands. Endocrinology 134, 475–481 (1994).

    Article  CAS  PubMed  Google Scholar 

  83. Sharp, B.M., Roy, S. & Bidlack, J.M. Evidence for opioid receptors on cells involved in host defense and the immune system. J. Neuroimmunol. 83, 45–56 (1998).

    Article  CAS  PubMed  Google Scholar 

  84. Machelska, H. & Stein, C. Pain control by immune-derived opioids. Clin. Exp. Pharmacol. Physiol. 27, 533–536 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Hook, V.Y. et al. Evidence for functional localization of the proenkephalin-processing enzyme, prohormone thiol protease, to secretory vesicles of chromaffin cells. Endocrinology 140, 3744–3754 (1999).

    Article  CAS  PubMed  Google Scholar 

  86. Goumon, Y. et al. Characterization of antibacterial COOH-terminal proenkephalin-A-derived peptides (PEAP) in infectious fluids. Importance of enkelytin, the antibacterial PEAP209–237 secreted by stimulated chromaffin cells. J. Biol. Chem. 273, 29847–29856 (1998).

    Article  CAS  PubMed  Google Scholar 

  87. Lugardon, K. et al. Antibacterial and antifungal activities of vasostatin-1, the N-terminal fragment of chromogranin A. J. Biol. Chem. 275, 10745–10753 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Lugardon, K. et al. Structural and biological characterization of chromofungin, the antifungal chromogranin A(47–66)-derived peptide. Ann. NY Acad. Sci. 971, 359–361 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Strub, J.M. et al. Processing of chromogranin B in bovine adrenal medulla. Identification of secretolytin, the endogenous C-terminal fragment of residues 614–626 with antibacterial activity. Eur. J. Biochem. 229, 356–368 (1995).

    Article  CAS  PubMed  Google Scholar 

  90. Tasiemski, A. et al. Presence of chromogranin-derived antimicrobial peptides in plasma during coronary artery bypass surgery and evidence of an immune origin of these peptides. Blood 100, 553–559 (2002).

    Article  CAS  PubMed  Google Scholar 

  91. Mor, A., Amiche, M. & Nicolas, P. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry 33, 6642–6650 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Bateman, A. et al. The isolation and characterization of a novel corticostatin/defensin-like peptide from the kidney. J. Biol. Chem. 271, 10654–10659 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Marti for preparation of the figures. Supported by the National Institute of Dental and Craniofacial Research (1 R01 DE014390-01A2), National Institutes of Health (K.A.B.) and the Centre National de la Recherche Scientifique, Ministére de la Recherche et des Technologies, National Institutes of Health–Forgarty, Fondation pour la Recherche Médicale and Génopole-Lille (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim A Brogden.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brogden, K., Guthmiller, J., Salzet, M. et al. The nervous system and innate immunity: the neuropeptide connection. Nat Immunol 6, 558–564 (2005). https://doi.org/10.1038/ni1209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing