Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

See no evil, hear no evil, do no evil: the lessons of immune privilege

Abstract

Immune-mediated inflammation and allograft rejection are greatly reduced in certain organs, a phenomenon called 'immune privilege'. Immune privilege is well developed in three regions of the body: the eye, the brain and the pregnant uterus. Immune-mediated inflammation has devastating consequences in the eye and brain, which have limited capacity for regeneration. Likewise, loss of immune privilege at the maternal-fetal interface culminates in abortion in rodents. However, all three regions share many adaptations that restrict the induction and expression of immune-mediated inflammation. A growing body of evidence from rodent studies suggests that a breakdown in immune privilege contributes to multiple sclerosis, uveitis, corneal allograft rejection and possibly even immune abortion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organ systems involved in the induction of ACAID.

Similar content being viewed by others

References

  1. van Dooremaal, J.C. Die Entwicklung der in fremden Grund versetzten lebenden Geweba. Albrecht Von Graefes Arch. Ophthalmol. 19, 358–373 (1873).

    Google Scholar 

  2. Medawar, P.B. Immunity to homologous grafted skin. III. The fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Streilein, J.W. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat. Rev. Immunol. 3, 879–889 (2003).

    CAS  PubMed  Google Scholar 

  4. Trowsdale, J. & Betz, A. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nat. Immunol. 7, 241–246 (2006).

    CAS  PubMed  Google Scholar 

  5. Kaplan, H.J. & Streilein, J.W. Immune response to immunization via the anterior chamber of the eye. I. F. lymphocyte-induced immune deviation. J. Immunol. 118, 809–814 (1977).

    CAS  PubMed  Google Scholar 

  6. Gordon, L.B. et al. Ovalbumin is more immunogenic when introduced into brain or cerebrospinal fluid than into extracerebral sites. J. Neuroimmunol. 40, 81–87 (1992).

    CAS  PubMed  Google Scholar 

  7. Harling-Berg, C. et al. Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid. J. Neuroimmunol. 25, 185–193 (1989).

    CAS  PubMed  Google Scholar 

  8. Harling-Berg, C.J. et al. Myelin basic protein infused into cerebrospinal fluid suppresses experimental autoimmune encephalomyelitis. J. Neuroimmunol. 35, 45–51 (1991).

    CAS  PubMed  Google Scholar 

  9. Barker, C.F. & Billingham, R.E. Immunologically privileged sites. Adv. Immunol. 25, 1–54 (1977).

    CAS  PubMed  Google Scholar 

  10. McLean, J.M. & Scothorne, R.J. The lymphatics of the endometrium in the rabbit. J. Anat. 107, 39–48 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bertrams, J. et al. The specificity of leukocyte antibodies in histocompatibility testing of serum from prima- and multiparas. Bibl. Haematol. 37, 98–106 (1971).

    CAS  PubMed  Google Scholar 

  12. Abi-Hanna, D. et al. HLA antigens in ocular tissues. I. In vivo expression in human eyes. Transplantation 45, 610–613 (1988).

    CAS  PubMed  Google Scholar 

  13. Lampson, L.A. & Fisher, C.A. Weak HLA and β2-microglobulin expression of neuronal cell lines can be modulated by interferon. Proc. Natl. Acad. Sci. USA 81, 6476–6480 (1984).

    CAS  PubMed  Google Scholar 

  14. Le Bouteiller, P. HLA class I chromosomal region, genes, and products: facts and questions. Crit. Rev. Immunol. 14, 89–129 (1994).

    CAS  PubMed  Google Scholar 

  15. Joly, E. et al. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science 253, 1283–1285 (1991).

    CAS  PubMed  Google Scholar 

  16. Ljunggren, H.G. et al. The RMA-S lymphoma mutant; consequences of a peptide loading defect on immunological recognition and graft rejection. Int. J. Cancer Suppl. 6, 38–44 (1991).

    CAS  PubMed  Google Scholar 

  17. Moffett-King, A. Natural killer cells and pregnancy. Nat. Rev. Immunol. 2, 656–663 (2002).

    CAS  PubMed  Google Scholar 

  18. Ishitani, A. & Geraghty, D.E. Alternative splicing of HLA-G transcripts yields proteins with primary structures resembling both class I and class II antigens. Proc. Natl. Acad. Sci. USA 89, 3947–3951 (1992).

    CAS  PubMed  Google Scholar 

  19. Kovats, S. et al. A class I antigen, HLA-G, expressed in human trophoblasts. Science 248, 220–223 (1990).

    CAS  PubMed  Google Scholar 

  20. Le Discorde, M. et al. Expression of HLA-G in human cornea, an immune-privileged tissue. Hum. Immunol. 64, 1039–1044 (2003).

    CAS  PubMed  Google Scholar 

  21. Niederkorn, J.Y. et al. Expression of a nonclassical MHC class Ib molecule in the eye. Transplantation 68, 1790–1799 (1999).

    CAS  PubMed  Google Scholar 

  22. Rouas-Freiss, N. et al. Direct evidence to support the role of HLA-G in protecting the fetus from maternal uterine natural killer cytolysis. Proc. Natl. Acad. Sci. USA 94, 11520–11525 (1997).

    CAS  PubMed  Google Scholar 

  23. Rouas-Freiss, N. et al. Role of HLA-G in maternal-fetal immune tolerance. Transplant. Proc. 31, 724–725 (1999).

    CAS  PubMed  Google Scholar 

  24. Lee, N. et al. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc. Natl. Acad. Sci. USA 95, 5199–5204 (1998).

    CAS  PubMed  Google Scholar 

  25. Navarro, F. et al. The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. Eur. J. Immunol. 29, 277–283 (1999).

    CAS  PubMed  Google Scholar 

  26. Fournel, S. et al. Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+ cells by interacting with CD8. J. Immunol. 164, 6100–6104 (2000).

    CAS  PubMed  Google Scholar 

  27. Wiendl, H. et al. Hide-and-seek in the brain: a role for HLA-G mediating immune privilege for glioma cells. Semin. Cancer Biol. 13, 343–351 (2003).

    CAS  PubMed  Google Scholar 

  28. Griffith, T.S. et al. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science 270, 1189–1192 (1995).

    CAS  PubMed  Google Scholar 

  29. Stuart, P.M. et al. CD95 ligand (FasL)-induced apoptosis is necessary for corneal allograft survival. J. Clin. Invest. 99, 396–402 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yamagami, S. et al. Role of Fas-Fas ligand interactions in the immunorejection of allogeneic mouse corneal transplants. Transplantation 64, 1107–1111 (1997).

    CAS  PubMed  Google Scholar 

  31. Jerzak, M. & Bischof, P. Apoptosis in the first trimester human placenta: the role in maintaining immune privilege at the maternal-foetal interface and in the trophoblast remodelling. Eur. J. Obstet. Gynecol. Reprod. Biol. 100, 138–142 (2002).

    CAS  PubMed  Google Scholar 

  32. Choi, C. & Benveniste, E.N. Fas ligand/Fas system in the brain: regulator of immune and apoptotic responses. Brain Res. Brain Res. Rev. 44, 65–81 (2004).

    CAS  PubMed  Google Scholar 

  33. Sata, M. et al. Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler. Thromb. Vasc. Biol. 20, 309–316 (2000).

    CAS  PubMed  Google Scholar 

  34. Walsh, K. & Sata, M. Is extravasation a Fas-regulated process? Mol. Med. Today 5, 61–67 (1999).

    CAS  PubMed  Google Scholar 

  35. Lee, H.O. et al. TRAIL: a mechanism of tumor surveillance in an immune privileged site. J. Immunol. 169, 4739–4744 (2002).

    PubMed  Google Scholar 

  36. Phillips, T.A. et al. TRAIL (Apo-2L) and TRAIL receptors in human placentas: implications for immune privilege. J. Immunol. 162, 6053–6059 (1999).

    CAS  PubMed  Google Scholar 

  37. Wang, S. et al. Role of TRAIL and IFN-γ in CD4+ T cell-dependent tumor rejection in the anterior chamber of the eye. J. Immunol. 171, 2789–2796 (2003).

    CAS  PubMed  Google Scholar 

  38. Dorr, J. et al. Lack of tumor necrosis factor-related apoptosis-inducing ligand but presence of its receptors in the human brain. J. Neurosci. 22, 1–5 (2002).

    Google Scholar 

  39. Bora, N.S. et al. Differential expression of the complement regulatory proteins in the human eye. Invest. Ophthalmol. Vis. Sci. 34, 3579–3584 (1993).

    CAS  PubMed  Google Scholar 

  40. Holmes, C.H. et al. Complement regulatory proteins at the feto-maternal interface during human placental development: distribution of CD59 by comparison with membrane cofactor protein (CD46) and decay accelerating factor (CD55). Eur. J. Immunol. 22, 1579–1585 (1992).

    CAS  PubMed  Google Scholar 

  41. Holmes, C.H. et al. Preferential expression of the complement regulatory protein decay accelerating factor at the fetomaternal interface during human pregnancy. J. Immunol. 144, 3099–3105 (1990).

    CAS  PubMed  Google Scholar 

  42. Lass, J.H. et al. Expression of two molecular forms of the complement decay-accelerating factor in the eye and lacrimal gland. Invest. Ophthalmol. Vis. Sci. 31, 1136–1148 (1990).

    CAS  PubMed  Google Scholar 

  43. Rooney, I.A. et al. Complement in human reproduction: activation and control. Immunol. Res. 12, 276–294 (1993).

    CAS  PubMed  Google Scholar 

  44. Sohn, J.H. et al. Chronic low level complement activation within the eye is controlled by intraocular complement regulatory proteins. Invest. Ophthalmol. Vis. Sci. 41, 3492–3502 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu, C. et al. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 287, 498–501 (2000).

    CAS  PubMed  Google Scholar 

  46. Sohn, J.H. et al. Complement regulatory activity of normal human intraocular fluid is mediated by MCP, DAF, and CD59. Invest. Ophthalmol. Vis. Sci. 41, 4195–4202 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Harrower, T.P. et al. Complement regulatory proteins are expressed at low levels in embryonic human, wild type and transgenic porcine neural tissue. Xenotransplantation 11, 60–71 (2004).

    CAS  PubMed  Google Scholar 

  48. Singhrao, S.K. et al. Differential expression of individual complement regulators in the brain and choroid plexus. Lab. Invest. 79, 1247–1259 (1999).

    CAS  PubMed  Google Scholar 

  49. Taylor, A.W. Ocular immunosuppressive microenvironment. Chem. Immunol. 73, 72–89 (1999).

    CAS  PubMed  Google Scholar 

  50. Taylor, A.W. et al. α-melanocyte-stimulating hormone suppresses antigen-stimulated T cell production of gamma-interferon. Neuroimmunomodulation 1, 188–194 (1994).

    CAS  PubMed  Google Scholar 

  51. Taylor, A.W. et al. Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. J. Immunol. 153, 1080–1086 (1994).

    CAS  PubMed  Google Scholar 

  52. Taylor, A.W. & Yee, D.G. Somatostatin is an immunosuppressive factor in aqueous humor. Invest. Ophthalmol. Vis. Sci. 44, 2644–2649 (2003).

    PubMed  Google Scholar 

  53. Taylor, A.W. et al. Suppression of nitric oxide generated by inflammatory macrophages by calcitonin gene-related peptide in aqueous humor. Invest. Ophthalmol. Vis. Sci. 39, 1372–1378 (1998).

    CAS  PubMed  Google Scholar 

  54. Apte, R.S. et al. Local inhibition of natural killer cell activity promotes the progressive growth of intraocular tumors. Invest. Ophthalmol. Vis. Sci. 38, 1277–1282 (1997).

    CAS  PubMed  Google Scholar 

  55. Apte, R.S. & Niederkorn, J.Y. Isolation and characterization of a unique natural killer cell inhibitory factor present in the anterior chamber of the eye. J. Immunol. 156, 2667–2673 (1996).

    CAS  PubMed  Google Scholar 

  56. Apte, R.S. et al. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J. Immunol. 160, 5693–5696 (1998).

    CAS  PubMed  Google Scholar 

  57. de la Cruz, P.O., Jr. et al. Lymphocytic infiltration in uveal malignant melanoma. Cancer 65, 112–115 (1990).

    PubMed  Google Scholar 

  58. Mochizuki, M. et al. Immunoregulation by aqueous humor. Cornea 19, S24–S25 (2000).

    CAS  PubMed  Google Scholar 

  59. Sugita, S. et al. Soluble Fas ligand and soluble Fas in ocular fluid of patients with uveitis. Br. J. Ophthalmol. 84, 1130–1134 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gregory, M.S. et al. Membrane Fas ligand activates innate immunity and terminates ocular immune privilege. J. Immunol. 169, 2727–2735 (2002).

    CAS  PubMed  Google Scholar 

  61. Robertson, S.A. et al. Transforming growth factor β–a mediator of immune deviation in seminal plasma. J. Reprod. Immunol. 57, 109–128 (2002).

    CAS  PubMed  Google Scholar 

  62. Tremellen, K.P. et al. Seminal transforming growth factor β1 stimulates granulocyte-macrophage colony-stimulating factor production and inflammatory cell recruitment in the murine uterus. Biol. Reprod. 58, 1217–1225 (1998).

    CAS  PubMed  Google Scholar 

  63. Munn, D.H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    CAS  PubMed  Google Scholar 

  64. Baban, B. et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61, 67–77 (2004).

    CAS  PubMed  Google Scholar 

  65. Malina, H.Z. & Martin, X.D. Indoleamine 2,3-dioxygenase activity in the aqueous humor, iris/ciliary body, and retina of the bovine eye. Graefes Arch. Clin. Exp. Ophthalmol. 231, 482–486 (1993).

    CAS  PubMed  Google Scholar 

  66. Malina, H.Z. & Martin, X.D. Indoleamine 2,3-dioxygenase: antioxidant enzyme in the human eye. Graefes Arch. Clin. Exp. Ophthalmol. 234, 457–462 (1996).

    CAS  PubMed  Google Scholar 

  67. Massa, P.T. Specific suppression of major histocompatibility complex class I and class II genes in astrocytes by brain-enriched gangliosides. J. Exp. Med. 178, 1357–1363 (1993).

    CAS  PubMed  Google Scholar 

  68. Calandra, T. et al. The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J. Exp. Med. 179, 1895–1902 (1994).

    CAS  PubMed  Google Scholar 

  69. Yamasaki, T. et al. Enhanced H-2 expression and T-cell-dependent rejection after intracerebral transplantation of the murine lymphoma YAC-1. Cell. Immunol. 120, 387–395 (1989).

    CAS  PubMed  Google Scholar 

  70. Niederkorn, J.Y. Immune privilege in the anterior chamber of the eye. Crit. Rev. Immunol. 22, 13–46 (2002).

    CAS  PubMed  Google Scholar 

  71. Streilein, J.W. & Niederkorn, J.Y. Induction of anterior chamber-associated immune deviation requires an intact, functional spleen. J. Exp. Med. 153, 1058–1067 (1981).

    CAS  PubMed  Google Scholar 

  72. Wang, Y. et al. Blood mononuclear cells induce regulatory NK T thymocytes in anterior chamber-associated immune deviation. J. Leukoc. Biol. 69, 741–746 (2001).

    CAS  PubMed  Google Scholar 

  73. Whittum, J.A. et al. Intracameral inoculation of herpes simplex virus type I induces anterior chamber associated immune deviation. Curr. Eye Res. 2, 691–697 (1982).

    PubMed  Google Scholar 

  74. Li, X. et al. The induction of splenic suppressor T cells through an immune-privileged site requires an intact sympathetic nervous system. J. Neuroimmunol. 153, 40–49 (2004).

    CAS  PubMed  Google Scholar 

  75. Wilbanks, G.A. & Streilein, J.W. Studies on the induction of anterior chamber-associated immune deviation (ACAID). 1. Evidence that an antigen-specific, ACAID- inducing, cell-associated signal exists in the peripheral blood. J. Immunol. 146, 2610–2617 (1991).

    CAS  PubMed  Google Scholar 

  76. Goldschneider, I. & Cone, R.E. A central role for peripheral dendritic cells in the induction of acquired thymic tolerance. Trends Immunol. 24, 77–81 (2003).

    CAS  PubMed  Google Scholar 

  77. Faunce, D.E. et al. MIP-2 recruits NKT cells to the spleen during tolerance induction. J. Immunol. 166, 313–321 (2001).

    CAS  PubMed  Google Scholar 

  78. Faunce, D.E. & Stein-Streilein, J. NKT cell-derived RANTES recruits APCs and CD8+ T cells to the spleen during the generation of regulatory T cells in tolerance. J. Immunol. 169, 31–38 (2002).

    CAS  PubMed  Google Scholar 

  79. D'Orazio, T.J. & Niederkorn, J.Y. Splenic B cells are required for tolerogenic antigen presentation in the induction of anterior chamber-associated immune deviation (ACAID). Immunology 95, 47–55 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Nakamura, T. et al. CD4+ NKT cells, but not conventional CD4+ T cells, are required to generate efferent CD8+ T regulatory cells following antigen inoculation in an immune-privileged site. J. Immunol. 171, 1266–1271 (2003).

    CAS  PubMed  Google Scholar 

  81. Skelsey, M.E. et al. Splenic B cells act as antigen presenting cells for the induction of anterior chamber-associated immune deviation. Invest. Ophthalmol. Vis. Sci. 44, 5242–5251 (2003).

    PubMed  Google Scholar 

  82. Skelsey, M.E. et al. CD25+, interleukin-10-producing CD4+ T cells are required for suppressor cell production and immune privilege in the anterior chamber of the eye. Immunology 110, 18–29 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Sonoda, K.H. et al. CD1-reactive natural killer T cells are required for development of systemic tolerance through an immune-privileged site. J. Exp. Med. 190, 1215–1226 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Sonoda, K.H. et al. NK T cell-derived IL-10 is essential for the differentiation of antigen- specific T regulatory cells in systemic tolerance. J. Immunol. 166, 42–50 (2001).

    CAS  PubMed  Google Scholar 

  85. Sonoda, K.H. & Stein-Streilein, J. CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance. Eur. J. Immunol. 32, 848–857 (2002).

    CAS  PubMed  Google Scholar 

  86. Skelsey, M.E. et al. γδ T cells are needed for ocular immune privilege and corneal graft survival. J. Immunol. 166, 4327–4333 (2001).

    CAS  PubMed  Google Scholar 

  87. Xu, Y. & Kapp, J.A. γδ T cells are critical for the induction of anterior chamber- associated immune deviation. Immunology 104, 142–148 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Xu, Y. & Kapp, J.A. γδ T cells in anterior chamber-induced tolerance in CD8+ CTL responses. Invest. Ophthalmol. Vis. Sci. 43, 3473–3479 (2002).

    PubMed  Google Scholar 

  89. Mizuno, K. et al. Histopathologic analysis of experimental autoimmune uveitis attenuated by intracameral injection of S-antigen. Curr. Eye Res. 8, 113–121 (1989).

    CAS  PubMed  Google Scholar 

  90. Niederkorn, J.Y. & Mellon, J. Anterior chamber-associated immune deviation promotes corneal allograft survival. Invest. Ophthalmol. Vis. Sci. 37, 2700–2707 (1996).

    CAS  PubMed  Google Scholar 

  91. She, S.C. et al. Intracameral injection of allogeneic lymphocytes enhances corneal graft survival. Invest. Ophthalmol. Vis. Sci. 31, 1950–1956 (1990).

    CAS  PubMed  Google Scholar 

  92. Sonoda, K.H. et al. Long-term survival of corneal allografts is dependent on intact CD1d- reactive NKT cells. J. Immunol. 168, 2028–2034 (2002).

    CAS  PubMed  Google Scholar 

  93. Sonoda, Y. & Streilein, J.W. Impaired cell-mediated immunity in mice bearing healthy orthotopic corneal allografts. J. Immunol. 150, 1727–1734 (1993).

    CAS  PubMed  Google Scholar 

  94. Jayaraman, S. et al. Exacerbation of murine herpes simplex virus-mediated stromal keratitis by Th2 type T cells. J. Immunol. 151, 5777–5789 (1993).

    CAS  PubMed  Google Scholar 

  95. Pearce, E.J. & MacDonald, A.S. The immunobiology of schistosomiasis. Nat. Rev. Immunol. 2, 499–511 (2002).

    CAS  PubMed  Google Scholar 

  96. Pearlman, E. Immunopathology of onchocerciasis: a role for eosinophils in onchocercal dermatitis and keratitis. Chem. Immunol. 66, 26–40 (1997).

    CAS  PubMed  Google Scholar 

  97. Katagiri, K. et al. Using tolerance induced via the anterior chamber of the eye to inhibit Th2-dependent pulmonary pathology. J. Immunol. 169, 84–89 (2002).

    CAS  PubMed  Google Scholar 

  98. James, E. et al. Multiparity induces priming to male-specific minor histocompatibility antigen, HY, in mice and humans. Blood 102, 388–393 (2003).

    CAS  PubMed  Google Scholar 

  99. Lengerova, A. & Vojtiskova, M. Prolonged survival of syngeneic male skin grafts in parous C57B1 mice. Folia Biol. (Praha) 9, 72–74 (1963).

    CAS  Google Scholar 

  100. Robertson, S.A. et al. Cytokine-leukocyte networks and the establishment of pregnancy. Am. J. Reprod. Immunol. 37, 438–442 (1997).

    CAS  PubMed  Google Scholar 

  101. Tafuri, A. et al. T cell awareness of paternal alloantigens during pregnancy. Science 270, 630–633 (1995).

    CAS  PubMed  Google Scholar 

  102. Tremellen, K.P. et al. The effect of intercourse on pregnancy rates during assisted human reproduction. Hum. Reprod. 15, 2653–2658 (2000).

    CAS  PubMed  Google Scholar 

  103. Aluvihare, V.R. et al. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    CAS  PubMed  Google Scholar 

  104. Somerset, D.A. et al. Normal human pregnancy is associated with an elevation in the immune suppressive CD25+ CD4+ regulatory T-cell subset. Immunology 112, 38–43 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Arck, P.C. et al. Murine T cell determination of pregnancy outcome: I. Effects of strain, αβ T cell receptor, γδ T cell receptor, and γδ T cell subsets. Am. J. Reprod. Immunol. 37, 492–502 (1997).

    CAS  PubMed  Google Scholar 

  106. Arck, P.C. et al. Murine T cell determination of pregnancy outcome. Cell. Immunol. 196, 71–79 (1999).

    CAS  PubMed  Google Scholar 

  107. Nagaeva, O. et al. Dominant IL-10 and TGF-β mRNA expression in gammadeltaT cells of human early pregnancy decidua suggests immunoregulatory potential. Am. J. Reprod. Immunol. 48, 9–17 (2002).

    PubMed  Google Scholar 

  108. Mincheva-Nilsson, L. et al. γδ T cells of human early pregnancy decidua: evidence for local proliferation, phenotypic heterogeneity, and extrathymic differentiation. J. Immunol. 159, 3266–3277 (1997).

    CAS  PubMed  Google Scholar 

  109. Wenkel, H. et al. Systemic immune deviation in the brain that does not depend on the integrity of the blood-brain barrier. J. Immunol. 164, 5125–5131 (2000).

    CAS  PubMed  Google Scholar 

  110. Yoshida, M. et al. Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 1. Inhibition of T-cell activation in vitro by direct cell-to-cell contact. Invest. Ophthalmol. Vis. Sci. 41, 811–821 (2000).

    CAS  PubMed  Google Scholar 

  111. Gimsa, U. et al. Astrocytes protect the CNS: antigen-specific T helper cell responses are inhibited by astrocyte-induced upregulation of CTLA-4 (CD152). J. Mol. Med. 82, 364–372 (2004).

    CAS  PubMed  Google Scholar 

  112. Egen, J.G. et al. CTLA-4: new insights into its biological function and use in tumor immunotherapy. Nat. Immunol. 3, 611–618 (2002).

    CAS  PubMed  Google Scholar 

  113. Pearson, H. Reproductive immunology: Immunity's pregnant pause. Nature 420, 265–266 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I dedicate this review to the memory of J.W. Streilein, who contributed substantially to the understanding of immune-privileged sites. Supported by Research to Prevent Blindness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Y Niederkorn.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niederkorn, J. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol 7, 354–359 (2006). https://doi.org/10.1038/ni1328

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1328

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing