Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lymphoid organ development: from ontogeny to neogenesis

Abstract

The development of lymphoid organs can be viewed as a continuum. At one end are the 'canonical' secondary lymphoid organs, including lymph nodes and spleen; at the other end are 'ectopic' or tertiary lymphoid organs, which are cellular accumulations arising during chronic inflammation by the process of lymphoid neogenesis. Secondary lymphoid organs are genetically 'preprogrammed' and 'prepatterned' during ontogeny, whereas tertiary lymphoid organs arise under environmental influences and are not restricted to specific developmental 'windows' or anatomic locations. Between these two boundaries are other types of lymphoid tissues that are less developmentally but more environmentally regulated, such as Peyer's patches, nasal-associated lymphoid tissue, bronchial-associated lymphoid tissue and inducible bronchial-associated lymphoid tissue. Their regulation, functions and potential effects are discussed here.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lymph node structure.
Figure 2: Plasticity in secondary and tertiary lymphoid organ development.

Similar content being viewed by others

References

  1. Eikelenboom, P., Nassy, J.J., Post, J., Versteeg, J.C. & Langevoort, H.L. The histogenesis of lymph nodes in rat and rabbit. Anat. Rec. 190, 201–215 (1978).

    Article  CAS  PubMed  Google Scholar 

  2. Mebius, R.E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Sabin, F.R. On the origin of the lymphatic system from the veins, and the development of the lymph hearts and thoracic duct in the pig. Am. J. Anat. 1, 367–389 (1902).

    Article  Google Scholar 

  4. Sabin, F.R. On the development of the superficial lymphatics in the skin of the pig. Am. J. Anat. 3, 183–195 (1904).

    Article  Google Scholar 

  5. Huntington, G.S. & McClure, C.F.W. The anatomy and development of the jugular lymph sac in the domestic cat (Felis Domestica). Am. J. Anat. 10, 177–311 (1910).

    Article  Google Scholar 

  6. Oliver, G. Lymphatic vasculature development. Nat. Rev. Immunol. 4, 35–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Wigle, J.T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J. 21, 1505–1513 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 98, 769–778 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Schacht, V. et al. T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J. 22, 3546–3556 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshida, H. et al. Expression of α4β7 integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J. Immunol. 167, 2511–2521 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida, H. et al. IL-7 receptor α+ CD3 cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol. 11, 643–655 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Rennert, P.D., Browning, J.L., Mebius, R., Mackay, F. & Hochman, P.S. Surface lymphotoxin α/β complex is required for the development of peripheral lymphoid organs. J. Exp. Med. 184, 1999–2006 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Girard, J.P. & Springer, T.A. High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol. Today 16, 449–457 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Miyasaka, M. & Tanaka, T. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat. Rev. Immunol. 4, 360–370 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Gallatin, W.M., Weissman, I.L. & Butcher, E.C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304, 30–34 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Streeter, P.R., Rouse, B.T. & Butcher, E.C. Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J. Cell Biol. 107, 1853–1862 (1988).

    Article  CAS  PubMed  Google Scholar 

  18. Hemmerich, S., Butcher, E.C. & Rosen, S.D. Sulfation-dependent recognition of HEV-ligands by L-selectin and MECA-79, an adhesion-blocking mAb. J. Exp. Med. 180, 2219–2226 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Rosen, S.D. Endothelial ligands for L-selectin: from lymphocyte recirculation to allograft rejection. Am. J. Pathol. 155, 1013–1020 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maly, P. et al. The α(1,3)fucosyltransferase Fuc-TVII controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Bistrup, A. et al. Sulfotransferases of two specificities function in the reconstitution of high endothelial cell ligands for L-selectin. J. Cell Biol. 145, 899–910 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hiraoka, N. et al. A novel, high endothelial venule-specific sulfotransferase expresses 6-sulfo sialyl Lewis(x), an L-selectin ligand displayed by CD34. Immunity 11, 79–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Homeister, J.W. et al. The α(1,3)fucosyltransferases FucT-IV and FucT-VII exert collaborative control over selectin-dependent leukocyte recruitment and lymphocyte homing. Immunity 15, 115–126 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Berlin, C. et al. α4β7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell 74, 185–195 (1993).

    Article  CAS  PubMed  Google Scholar 

  25. Mebius, R.E., Streeter, P.R., Michie, S., Butcher, E.C. & Weissman, I.L. A developmental switch in lymphocyte homing receptor and endothelial vascular addressin expression regulates lymphocyte homing and permits CD4+CD3 cells to colonize lymph nodes. Proc. Natl. Acad. Sci. USA 93, 11019–11024 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Locksley, R.M., Killeen, N. & Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Aggarwal, B.B. Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 3, 745–756 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Ware, C.F., Vanarsdale, T.L., Crowe, P.D. & Browning, J.L. The ligands and receptors of the lymphotoxin system. Curr. Top. Microbiol. Immunol. 198, 175–218 (1995).

    CAS  PubMed  Google Scholar 

  29. Browning, J.L. et al. Lymphotoxin-β, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72, 847–856 (1993).

    Article  CAS  PubMed  Google Scholar 

  30. Crowe, P.D. et al. A lymphotoxin-β-specific receptor. Science 264, 707–710 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Force, W.R. et al. Mouse lymphotoxin-β receptor. Molecular genetics, ligand binding, and expression. J. Immunol. 155, 5280–5288 (1995).

    CAS  PubMed  Google Scholar 

  32. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Banks, T.A. et al. Lymphotoxin-α-deficient mice: effects on secondary lymphoid organ development and humoral immune responsiveness. J. Immunol. 155, 1685–1693 (1995).

    CAS  PubMed  Google Scholar 

  34. Ying, X., Chan, K., Shenoy, P., Hill, M. & Ruddle, N.H. Lymphotoxin plays a crucial role in the development and function of nasal-associated lymphoid tissue through regulation of chemokines and peripheral node addressin. Am. J. Pathol. 166, 135–146 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fukuyama, S. et al. Initiation of NALT organogenesis is independent of the IL-7R, LTβR, and NIK signaling pathways but requires the Id2 gene and CD3CD4+CD45+ cells. Immunity 17, 31–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Sacca, R., Turley, S., Soong, L., Mellman, I. & Ruddle, N.H. Transgenic expression of lymphotoxin restores lymph nodes to lymphotoxin-α-deficient mice. J. Immunol. 159, 4252–4260 (1997).

    CAS  PubMed  Google Scholar 

  37. Alimzhanov, M.B. et al. Abnormal development of secondary lymphoid tissues in lymphotoxin β-deficient mice. Proc. Natl. Acad. Sci. USA 94, 9302–9307 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Koni, P.A. et al. Distinct Roles in lymphoid organogenesis for lymphotoxins α and β in lymphotoxin-β deficient mice. Immunity 6, 491–500 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Rennert, P.D., Browning, J.L. & Hochman, P.S. Selective disruption of lymphotoxin ligands reveals a novel set of mucosal lymph nodes and unique effects on lymph node cellular organization. Int. Immunol. 9, 1627–1639 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Soderberg, K.A., Linehan, M.M., Ruddle, N.H. & Iwasaki, A. MAdCAM-1 expressing sacral lymph node in the lymphotoxin β-deficient mouse provides a site for immune generation following vaginal herpes simplex virus-2 infection. J. Immunol. 173, 1908–1913 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Drayton, D.L., Ying, X., Lee, J., Lesslauer, W. & Ruddle, N.H. Ectopic LT αβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med. 197, 1153–1163 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ngo, V.N. et al. Lymphotoxin α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Browning, J.L. et al. Lymphotoxin-β receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23, 539–550 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Randolph, G.J., Angeli, V. & Swartz, M.A. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat. Rev. Immunol. 5, 617–628 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Cyster, J.G. Lymphoid organ development and cell migration. Immunol. Rev. 195, 5–14 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Luther, S.A., Tang, H.L., Hyman, P.L., Farr, A.G. & Cyster, J.G. Coexpression of the chemokines ELC and SLC by T zone stromal cells and deletion of the ELC gene in the plt/plt mouse. Proc. Natl. Acad. Sci. USA 97, 12694–12699 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saeki, H., Moore, A.M., Brown, M.J. & Hwana, S.T. Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J. Immunol. 162, 2472–2475 (1999).

    CAS  PubMed  Google Scholar 

  48. Legler, D.F. et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 187, 655–660 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Hemmi, H. et al. Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-β1-dependent cells. Int. Immunol. 13, 695–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Scheinecker, C., McHugh, R., Shevach, E.M. & Germain, R.N. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J. Exp. Med. 196, 1079–1090 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, F.P. et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med. 191, 435–444 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilson, N.S. & Villadangos, J.A. Lymphoid organ dendritic cells: beyond the Langerhans cells paradigm. Immunol. Cell Biol. 82, 91–98 (2004).

    Article  PubMed  Google Scholar 

  55. Wilson, N.S., El-Sukkari, D. & Villadangos, J.A. Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 103, 2187–2195 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Steinman, R.M. et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance. Ann. NY Acad. Sci. 987, 15–25 (2003).

    Article  CAS  PubMed  Google Scholar 

  57. Cavanagh, L.L. & Von Andrian, U.H. Travellers in many guises: the origins and destinations of dendritic cells. Immunol. Cell Biol. 80, 448–462 (2002).

    Article  PubMed  Google Scholar 

  58. Wilson, N.S. et al. Most lymphoid organ dendritic cell types are phenotypically and functionally immature. Blood 102, 2187–2194 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Stoitzner, P., Tripp, C.H., Douillard, P., Saeland, S. & Romani, N. Migratory Langerhans cells in mouse lymph nodes in steady state and inflammation. J. Invest. Dermatol. 125, 116–125 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Cupedo, T., Jansen, W., Kraal, G. & Mebius, R.E. Induction of secondary and tertiary lymphoid structures in the skin. Immunity 21, 655–667 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Hall, J.G., Hopkins, J. & Reynolds, J. Studies of efferent lymph cells from nodes stimulated with oxazolone. Immunology 39, 141–149 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hall, J.G. & Smith, M.E. Studies on the afferent and efferent lymph of lymph nodes draining the site of application of fluorodinitrobenzene (FDNB). Immunology 21, 69–79 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. He, C. et al. Stimulation of regional lymphatic and blood flow by epicutaneous oxazolone. J. Appl. Physiol. 93, 966–973 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. West, C.A. et al. Stochastic regulation of cell migration from the efferent lymph to oxazolone-stimulated skin. J. Immunol. 166, 1517–1523 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Hay, J.B., Cahill, R.N. & Trnka, Z. The kinetics of antigen-reactive cells during lymphocyte recruitment. Cell. Immunol. 10, 145–153 (1974).

    Article  CAS  PubMed  Google Scholar 

  66. Cahill, R.N., Frost, H. & Trnka, Z. The effects of antigen on the migration of recirculating lymphocytes through single lymph nodes. J. Exp. Med. 143, 870–888 (1976).

    Article  CAS  PubMed  Google Scholar 

  67. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Lymph node fibroblastic reticular cells construct the stromal reticulum via contact with lymphocytes. J. Exp. Med. 200, 783–795 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hay, J.B. & Hobbs, B.B. The flow of blood to lymph nodes and its relation to lymphocyte traffic and the immune response. J. Exp. Med. 145, 31–44 (1977).

    Article  CAS  PubMed  Google Scholar 

  69. Ottaway, C.A. & Parrott, D.M. Regional blood flow and its relationship to lymphocyte and lymphoblast traffic during a primary immune reaction. J. Exp. Med. 150, 218–230 (1979).

    Article  CAS  PubMed  Google Scholar 

  70. Bai, Y. et al. L-selectin-dependent lymphoid occupancy is required to induce alloantigen-specific tolerance. J. Immunol. 168, 1579–1589 (2002).

    Article  CAS  PubMed  Google Scholar 

  71. Soderberg, K.A. et al. Innate control of adaptive immunity via remodeling of lymph node feed arteriole. Proc. Natl. Acad. Sci. USA 102, 16315–16320 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Myking, A.O. Morphological changes in paracortical high endothelial venules to single and repeated application of oxazolone to mouse skin. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 35, 63–71 (1980).

    Article  CAS  PubMed  Google Scholar 

  73. Mebius, R.E., Breve, J., Duijvestijn, A.M. & Kraal, G. The function of high endothelial venules in mouse lymph nodes stimulated by oxazolone. Immunology 71, 423–427 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hoke, D. et al. Selective modulation of the expression of L-selectin ligands by an immune response. Curr. Biol. 5, 670–678 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Swarte, V.V. et al. Regulation of fucosyltransferase-VII expression in peripheral lymph node high endothelial venules. Eur. J. Immunol. 28, 3040–3047 (1998).

    Article  CAS  PubMed  Google Scholar 

  76. Newberry, R.D. & Lorenz, R.G. Organizing a mucosal defense. Immunol. Rev. 206, 6–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  77. Goeringer, G.C. & Vidic, B. The embryogenesis and anatomy of Waldeyer's ring. Otolaryngol. Clin. North Am. 20, 207–217 (1987).

    Article  CAS  PubMed  Google Scholar 

  78. Harmsen, A. et al. Cutting edge: organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-alpha (LTα) and retinoic acid receptor-related orphan receptor-γ, but the organization of NALT is LTα dependent. J. Immunol. 168, 986–990 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Hameleers, D.M., van der Ende, M., Biewenga, J. & Sminia, T. An immunohistochemical study on the postnatal development of rat nasal-associated lymphoid tissue (NALT). Cell Tissue Res. 256, 431–438 (1989).

    Article  CAS  PubMed  Google Scholar 

  80. Constant, S.L. et al. Resident lung antigen-presenting cells have the capacity to promote Th2 T cell differentiation in situ. J. Clin. Invest. 110, 1441–1448 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moyron-Quiroz, J.E. et al. Role of inducible bronchus associated lymphoid tissue (iBALT) in respiratory immunity. Nat. Med. 10, 927–934 (2004).

    Article  CAS  PubMed  Google Scholar 

  82. Lorenz, R.G. & Newberry, R.D. Isolated lymphoid follicles can function as sites for induction of mucosal immune responses. Ann. NY Acad. Sci. 1029, 44–57 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Eberl, G. Inducible lymphoid tissues in the adult gut: recapitulation of a fetal developmental pathway? Nat. Rev. Immunol. 5, 413–420 (2005).

    Article  CAS  PubMed  Google Scholar 

  84. Finke, D., Acha-Orbea, H., Mattis, A., Lipp, M. & Kraehenbuhl, J. CD4+CD3- cells induce Peyer's patch development: role of α4β1 integrin activation by CXCR5. Immunity 17, 363–373 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Kratz, A., Campos-Neto, A., Hanson, M.S. & Ruddle, N.H. Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J. Exp. Med. 183, 1461–1472 (1996).

    Article  CAS  PubMed  Google Scholar 

  86. Yeaman, G.R. et al. Unique CD8+ T cell-rich lymphoid aggregates in human uterine endometrium. J. Leukoc. Biol. 61, 427–435 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Bistrup, A. et al. Detection of a sulfotransferase (HEC-GlcNAc6ST) in high endothelial venules of lymph nodes and in high endothelial venule-like vessels within ectopic lymphoid aggregates: relationship to the MECA-79 epitope. Am. J. Pathol. 164, 1635–1644 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pablos, J.L. et al. A HEV-restricted sulfotransferase is expressed in rheumatoid arthritis synovium and is induced by lymphotoxin-α/β and TNF-α in cultured endothelial cells. BMC Immunol. 6, 6 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Kerjaschki, D. et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J. Am. Soc. Nephrol. 15, 603–612 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Luther, S.A., Ansel, K.M. & Cyster, J.G. Overlapping roles of CXCL13, interleukin 7 receptor α, and CCR7 ligands in lymph node development. J. Exp. Med. 197, 1191–1198 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Paavonen, K. et al. Vascular endothelial growth factors C and D and their VEGFR-2 and 3 receptors in blood and lymphatic vessels in healthy and arthritic synovium. J. Rheumatol. 29, 39–45 (2002).

    CAS  PubMed  Google Scholar 

  92. Maruyama, K. et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J. Clin. Invest. 115, 2363–2372 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cursiefen, C. et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest. 113, 1040–1050 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest. 115, 247–257 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kaiserling, E. Newly-formed lymph nodes in the submucosa in chronic inflammatory bowel disease. Lymphology 34, 22–29 (2001).

    CAS  PubMed  Google Scholar 

  96. Heikenwalder, M. et al. Chronic lymphocytic inflammation specifies the organ tropism of prions. Science 307, 1107–1110 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Gause, A. et al. The B lymphocyte in rheumatoid arthritis: analysis of rearranged V kappa genes from B cells infiltrating the synovial membrane. Eur. J. Immunol. 25, 2775–2782 (1995).

    Article  CAS  PubMed  Google Scholar 

  98. Schroder, A.E., Greiner, A., Seyfert, C. & Berek, C. Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 93, 221–225 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dorner, T., Hansen, A., Jacobi, A. & Lipsky, P.E. Immunglobulin repertoire analysis provides new insights into the immunopathogenesis of Sjögren's syndrome. Autoimmun. Rev. 1, 119–124 (2002).

    Article  CAS  PubMed  Google Scholar 

  100. Sims, G.P., Shiono, H., Willcox, N. & Stott, D.I. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J. Immunol. 167, 1935–1944 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Stott, D.I., Hiepe, F., Hummel, M., Steinhauser, G. & Berek, C. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjögren's syndrome. J. Clin. Invest. 102, 938–946 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kim, H.J., Krenn, V., Steinhauser, G. & Berek, C. Plasma cell development in synovial germinal centers in patients with rheumatoid and reactive arthritis. J. Immunol. 162, 3053–3062 (1999).

    CAS  PubMed  Google Scholar 

  103. McMahon, E.J., Bailey, S.L., Castenada, C.V., Waldner, H. & Miller, S.D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11, 335–339 (2005).

    Article  CAS  PubMed  Google Scholar 

  104. Schrama, D. et al. Targeting of lymphotoxin-α to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14, 111–121 (2001).

    Article  CAS  PubMed  Google Scholar 

  105. Kaufman, D.L. et al. Spontaneous loss of T-cell tolerance to glutamic acid decarboxylase in murine insulin-dependent diabetes. Nature 366, 69–72 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Aguzzi, A. & Heikenwalder, M. Prions, cytokines, and chemokines: a meeting in lymphoid organs. Immunity 22, 145–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Seeger, H. et al. Coincident scrapie infection and nephritis lead to urinary prion excretion. Science 310, 324–326 (2005).

    Article  CAS  PubMed  Google Scholar 

  108. Hjelmstrom, P. Lymphoid neogenesis: de novo formation of lymphoid tissue in chronic inflammation through expression of homing chemokines. J. Leukoc. Biol. 69, 331–339 (2001).

    CAS  PubMed  Google Scholar 

  109. Wotherspoon, A.C. et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 342, 575–577 (1993).

    Article  CAS  PubMed  Google Scholar 

  110. Freni, M.A. et al. Focal lymphocytic aggregates in chronic hepatitis C: occurrence, immunohistochemical characterization, and relation to markers of autoimmunity. Hepatology 22, 389–394 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. Yu, P. et al. Priming of naive T cells inside tumors leads to eradication of established tumors. Nat. Immunol. 5, 141–149 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Wu, Q. et al. Reversal of spontaneous autoimmune insulitis in nonobese diabetic mice by soluble lymphotoxin receptor. J. Exp. Med. 193, 1327–1332 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fava, R.A. et al. A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J. Immunol. 171, 115–126 (2003).

    Article  CAS  PubMed  Google Scholar 

  114. Young, C.L., Adamson, T.C.I., Vaughan, J.H. & Fox, R.I. Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum. 27, 32–39 (1984).

    Article  CAS  PubMed  Google Scholar 

  115. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    Article  CAS  PubMed  Google Scholar 

  116. Weyand, C.M., Seyler, T.M. & Goronzy, J.J. B cells in rheumatoid synovitis. Arthritis Res. Ther. 7, S9–12 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Zvaifler, N.J. The immunopathology of joint inflammation in rheumatoid arthritis. Adv. Immunol. 16, 265–336 (1973).

    Article  CAS  PubMed  Google Scholar 

  118. Tsubaki, T. et al. Accumulation of plasma cells expressing CXCR3 in the synovial sublining regions of early rheumatoid arthritis in association with production of Mig/CXCL9 by synovial fibroblasts. Clin. Exp. Immunol. 141, 363–371 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shi, K. et al. Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients. J. Immunol. 166, 650–655 (2001).

    Article  CAS  PubMed  Google Scholar 

  120. Amft, N. et al. Ectopic expression of the B cell-attracting chemokine BCA-1 (CXCL13) on endothelial cells and within lymphoid follicles contributes to the establishment of germinal center-like structures in Sjögren's syndrome. Arthritis Rheum. 44, 2633–2641 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Barone, F. et al. Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjögren's syndrome. Arthritis Rheum. 52, 1773–1784 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Salomonsson, S. et al. Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjögren's syndrome. Scand. J. Immunol. 55, 336–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Murai, H., Hara, H., Hatae, T., Kobayashi, T. & Watanabe, T. Expression of CD23 in the germinal center of thymus from myasthenia gravis patients. J. Neuroimmunol. 76, 61–69 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Söderström, N. & Biörklund, A. Organization of the invading lymphoid tissue in human lymphoid thyroiditis. Scand. J. Immunol. 3, 295–301 (1974).

    Article  Google Scholar 

  125. Armengol, M.P. et al. Thyroid autoimmune disease: demonstration of thyroid antigen-specific B cells and recombination-activating gene expression in chemokine-containing active intrathyroidal germinal centers. Am. J. Pathol. 159, 861–873 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Armengol, M.P. et al. Chemokines determine local lymphoneogenesis and a reduction of circulating CXCR4+ T and CCR7 B and T lymphocytes in thyroid autoimmune diseases. J. Immunol. 170, 6320–6328 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Duijvestijn, A.M. et al. High endothelial differentiation in human lymphoid and inflammatory tissues defined by monoclonal antibody HECA-452. Am. J. Pathol. 130, 147–155 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Prineas, J.W. Multiple sclerosis: presence of lymphatic capillaries and lymphoid tissue in the brain and spinal cord. Science 203, 1123–1125 (1979).

    Article  CAS  PubMed  Google Scholar 

  129. Prineas, J.W. & Wright, R.G. Macrophages, lymphocytes, and plasma cells in the perivascular compartment in chronic multiple sclerosis. Lab. Invest. 38, 409–421 (1978).

    CAS  PubMed  Google Scholar 

  130. Serafini, B., Rosicarelli, B., Magliozzi, R., Stigliano, E. & Aloisi, F. Detection of ectopic B-cell follicles with germinal centers in the meninges of patients with secondary progressive multiple sclerosis. Brain Pathol. 14, 164–174 (2004).

    Article  PubMed  Google Scholar 

  131. Pashenkov, M., Soderstrom, M. & Link, H. Secondary lymphoid organ chemokines are elevated in the cerebrospinal fluid during central nervous system inflammation. J. Neuroimmunol. 135, 154–160 (2003).

    Article  CAS  PubMed  Google Scholar 

  132. Carlsen, H.S., Baekkevold, E.S., Morton, H.C., Haraldsen, G. & Brandtzaeg, P. Monocyte-like and mature macrophages produce CXCL13 (B-cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis. Blood (2004).

  133. Hanninen, A., Jaakkola, I. & Jalkanen, S. Mucosal addressin is required for the development of diabetes in nonobese diabetic mice. J. Immunol. 160, 6018–6025 (1998).

    CAS  PubMed  Google Scholar 

  134. Yang, X.D., Sytwu, H.K., McDevitt, H.O. & Michie, S.A. Involvement of β7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in the development of diabetes in obese diabetic mice. Diabetes 46, 1542–1547 (1997).

    Article  CAS  PubMed  Google Scholar 

  135. Hjelmstrom, P. et al. Lymphoid tissue homing chemokines are expressed in chronic inflammation. Am. J. Pathol. 156, 1133–1138 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cannella, B., Cross, A.H. & Raine, C.S. Upregulation and coexpression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J. Exp. Med. 172, 1521–1524 (1990).

    Article  CAS  PubMed  Google Scholar 

  137. Columba-Cabezas, S., Serafini, B., Ambrosini, E. & Aloisi, F. Lymphoid chemokines CCL19 and CCL21 are expressed in the central nervous system during experimental autoimmune encephalomyelitis: implications for the maintenance of chronic neuroinflammation. Brain Pathol. 13, 38–51 (2003).

    Article  PubMed  Google Scholar 

  138. Magliozzi, R., Columba-Cabezas, S., Serafini, B. & Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 11–23 (2004).

    Article  CAS  PubMed  Google Scholar 

  139. Mooij, P., de Wit, H.J. & Drexhage, H.A. An excess of dietary iodine accelerates the development of a thyroid-associated lymphoid tissue in autoimmune prone BB rats. Clin. Immunol. Immunopathol. 69, 189–198 (1993).

    Article  CAS  PubMed  Google Scholar 

  140. Katakai, T., Hara, T., Sugai, M., Gonda, H. & Shimizu, A. Th1-biased tertiary lymphoid tissue supported by CXC chemokine ligand 13-producing stromal network in chronic lesions of autoimmune gastritis. J. Immunol. 171, 4359–4368 (2003).

    Article  CAS  PubMed  Google Scholar 

  141. Steere, A.C., Duray, P.H. & Butcher, E.C. Spirochetal antigens and lymphoid cell surface markers in Lyme synovitis. Comparison with rheumatoid synovium and tonsillar lymphoid tissue. Arthritis Rheum. 31, 487–495 (1988).

    Article  CAS  PubMed  Google Scholar 

  142. Ghosh, S., Steere, A.C., Stollar, B.D. & Huber, B.T. In situ diversification of the antibody repertoire in chronic Lyme arthritis synovium. J. Immunol. 174, 2860–2869 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Rupprecht, T.A. et al. The chemokine CXCL13 (BLC): a putative diagnostic marker for neuroborreliosis. Neurology 65, 448–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Narayan, K. et al. The nervous system as ectopic germinal center: CXCL13 and IgG in lyme neuroborreliosis. Ann. Neurol. 57, 813–823 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. Hillan, K.J. et al. Expression of the mucosal vascular addressin, MAdCAM-1, in inflammatory liver disease. Liver 19, 509–518 (1999).

    Article  CAS  PubMed  Google Scholar 

  146. Mazzucchelli, L. et al. BCA-1 is highly expressed in Helicobacter pylori-induced mucosa-associated lymphoid tissue and gastric lymphoma. J. Clin. Invest. 104, R49–R54 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Dogan, A., Du, M., Koulis, A., Briskin, M.J. & Isaacson, P.G. Expression of lymphocyte homing receptors and vascular addressins in low-grade gastric B-cell lymphomas of mucosa-associated lymphoid tissue. Am. J. Pathol. 151, 1361–1369 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kobayashi, M. et al. Induction of peripheral lymph node addressin in human gastric mucosa infected by Helicobacter pylori. Proc. Natl. Acad. Sci. USA 101, 17807–17812 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Shomer, N.H., Fox, J.G., Juedes, A.E. & Ruddle, N.H. Helicobacter-induced chronic active lymphoid aggregates have characteristics of tertiary lymphoid tissue. Infect. Immun. 71, 3572–3577 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yoneyama, H. et al. Regulation by chemokines of circulating dendritic cell precursors, and the formation of portal tract-associated lymphoid tissue, in a granulomatous liver disease. J. Exp. Med. 193, 35–49 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Vermi, W. et al. Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma. Blood (2005).

  152. Baddoura, F.K. et al. Lymphoid neogenesis in murine cardiac allografts undergoing chronic rejection. Am. J. Transplant. 5, 510–516 (2005).

    Article  PubMed  Google Scholar 

  153. Thaunat, O. et al. Lymphoid neogenesis in chronic rejection: evidence for a local humoral alloimmune response. Proc. Natl. Acad. Sci. USA 102, 14723–14728 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Houtkamp, M.A., de Boer, O.J., van der Loos, C.M., van der Wal, A.C. & Becker, A.E. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J. Pathol. 193, 263–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  155. Sacca, R., Cuff, C.A., Lesslauer, W. & Ruddle, N.H. Differential activities of secreted lymphotoxin-α3 and membrane lymphotoxin-α1β2 in lymphotoxin-induced inflammation: critical role of TNF receptor 1 signaling. J. Immunol. 160, 485–491 (1998).

    CAS  PubMed  Google Scholar 

  156. Fan, L., Reilly, C.R., Luo, Y., Dorf, M.E. & Lo, D. Cutting edge: ectopic expression of the chemokine TCA4/SLC is sufficient to trigger lymphoid neogenesis. J. Immunol. 164, 3955–3959 (2000).

    Article  CAS  PubMed  Google Scholar 

  157. Luther, S.A. et al. Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J. Immunol. 169, 424–433 (2002).

    Article  CAS  PubMed  Google Scholar 

  158. Chen, S.C. et al. Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J. Immunol. 168, 1001–1008 (2002).

    Article  CAS  PubMed  Google Scholar 

  159. Martin, A.P. et al. A novel model for lymphocytic infiltration of the thyroid gland generated by transgenic expression of the CC chemokine CCL21. J. Immunol. 173, 4791–4798 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health (RO1 CA 16885, DK 57731 and AI 44453 to N.H.R. and F31 GM 20919 to D.L.D.) and the Anna Fuller Fund (S.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy H Ruddle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drayton, D., Liao, S., Mounzer, R. et al. Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7, 344–353 (2006). https://doi.org/10.1038/ni1330

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1330

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing