Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Foxp3+ regulatory T cell: a jack of all trades, master of regulation

Abstract

The function of regulatory T cells (Treg cells) has been attributed to a growing number of diverse pathways, molecules and processes. Seemingly contradictory conclusions regarding the mechanisms underlying Treg cell suppressive activity have revitalized skeptics in the field who challenge the core validity of the idea of Treg cells as central immune regulators. However, we note that a consensus may be emerging from the data: that multiple Treg cell functions act either directly or indirectly at the site of antigen presentation to create a regulatory milieu that promotes bystander suppression and infectious tolerance. Thus, the versatility and adaptability of the Foxp3+ Treg cells may in fact be the best argument that these cells are 'multitalented masters of immune regulation'.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A three-tiered model of the functions of Treg cells in maintaining normal immune homeostasis.

Similar content being viewed by others

References

  1. Gershon, R.K. & Kondo, K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology 18, 723–737 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Benacerraf, B., Kapp, J.A., Debre, P., Pierce, C.W. & de la Croix, F. The stimulation of specific suppressor T cells in genetic non-responder mice by linear random copolymers of L-amino acids. Transplant. Rev. 26, 21–38 (1975).

    CAS  PubMed  Google Scholar 

  3. Bach, J.F., Boitard, C., Yasunami, R. & Dardenne, M. Control of diabetes in NOD mice by suppressor cells. J. Autoimmun. 3 Suppl 1, 97–100 (1990).

    PubMed  Google Scholar 

  4. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  5. Herbelin, A., Gombert, J.M., Lepault, F., Bach, J.F. & Chatenoud, L. Mature mainstream TCR αβ+CD4+ thymocytes expressing L-selectin mediate “active tolerance” in the nonobese diabetic mouse. J. Immunol. 161, 2620–2628 (1998).

    CAS  PubMed  Google Scholar 

  6. Hall, B.M., Pearce, N.W., Gurley, K.E. & Dorsch, S.E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J. Exp. Med. 171, 141–157 (1990).

    CAS  PubMed  Google Scholar 

  7. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    CAS  PubMed  Google Scholar 

  8. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  9. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    CAS  PubMed  Google Scholar 

  10. Roncarolo, M.G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50 (2006).

    CAS  PubMed  Google Scholar 

  11. Faria, A.M. & Weiner, H.L. Oral tolerance. Immunol. Rev. 206, 232–259 (2005).

    CAS  PubMed  Google Scholar 

  12. Chang, C.C. et al. Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 3, 237–243 (2002).

    CAS  PubMed  Google Scholar 

  13. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    CAS  PubMed  Google Scholar 

  14. Zhang, Z.X., Yang, L., Young, K.J., DuTemple, B. & Zhang, L. Identification of a previously unknown antigen-specific regulatory T cell and its mechanism of suppression. Nat. Med. 6, 782–789 (2000).

    CAS  PubMed  Google Scholar 

  15. Hayday, A. & Tigelaar, R. Immunoregulation in the tissues by γδ T cells. Nat. Rev. Immunol. 3, 233–242 (2003).

    CAS  PubMed  Google Scholar 

  16. Bluestone, J.A. & Abbas, A.K. Natural versus adaptive regulatory T cells. Nat. Rev. Immunol. 3, 253–257 (2003).

    CAS  PubMed  Google Scholar 

  17. Malek, T.R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    CAS  PubMed  Google Scholar 

  18. Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    CAS  PubMed  Google Scholar 

  19. Gambineri, E., Torgerson, T.R. & Ochs, H.D. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr. Opin. Rheumatol. 15, 430–435 (2003).

    CAS  PubMed  Google Scholar 

  20. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    CAS  PubMed  Google Scholar 

  21. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 974–977 (1993).

    CAS  PubMed  Google Scholar 

  22. Tarbell, K.V. et al. Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J. Exp. Med. 204, 191–201 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mempel, T.R. et al. Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129–141 (2006).

    CAS  PubMed  Google Scholar 

  24. Piccirillo, C.A. & Shevach, E.M. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J. Immunol. 167, 1137–1140 (2001).

    CAS  PubMed  Google Scholar 

  25. Bopp, T. et al. Cyclic adenosine monophosphate is a key component of regulatory T cell-mediated suppression. J. Exp. Med. 204, 1303–1310 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Grossman, W.J. et al. Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21, 589–601 (2004).

    CAS  PubMed  Google Scholar 

  27. Gondek, D.C., Lu, L.F., Quezada, S.A., Sakaguchi, S. & Noelle, R.J. Cutting edge: contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme B-dependent, perforin-independent mechanism. J. Immunol. 174, 1783–1786 (2005).

    CAS  PubMed  Google Scholar 

  28. Zhao, D.M., Thornton, A.M., Dipaolo, R.J. & Shevach, E.M. Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood 107, 3925–3932 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Qin, H.Y. et al. A novel mechanism of regulatory T cell-mediated down-regulation of autoimmunity. Int. Immunol. 18, 1001–1015 (2006).

    CAS  PubMed  Google Scholar 

  30. Tang, Q. et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7, 83–92 (2006).

    CAS  PubMed  Google Scholar 

  31. Tang, Q. & Krummel, M.F. Imaging the function of regulatory T cells in vivo. Curr. Opin. Immunol. 18, 496–502 (2006).

    CAS  PubMed  Google Scholar 

  32. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M.J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).

    CAS  PubMed  Google Scholar 

  33. Valenzuela, H.F. et al. O-glycosylation regulates LNCaP prostate cancer cell susceptibility to apoptosis induced by galectin-1. Cancer Res. 67, 6155–6162 (2007).

    CAS  PubMed  Google Scholar 

  34. Toscano, M.A. et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8, 825–834 (2007).

    CAS  PubMed  Google Scholar 

  35. Jonuleit, H. et al. Infectious tolerance: human CD25+ regulatory T cells convey suppressor activity to conventional CD4+ T helper cells. J. Exp. Med. 196, 255–260 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dieckmann, D., Bruett, C.H., Ploettner, H., Lutz, M.B. & Schuler, G. Human CD4+CD25+ regulatory, contact-dependent T cells induce interleukin 10-producing, contact-independent type 1-like regulatory T cells. J. Exp. Med. 196, 247–253 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kearley, J., Barker, J.E., Robinson, D.S. & Lloyd, C.M. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. J. Exp. Med. 202, 1539–1547 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Munn, D.H. & Mellor, A.L. IDO and tolerance to tumors. Trends Mol. Med. 10, 15–18 (2004).

    CAS  PubMed  Google Scholar 

  39. Mellor, A.L. & Munn, D. Policing pregnancy: Tregs help keep the peace. Trends Immunol. 25, 563–565 (2004).

    CAS  PubMed  Google Scholar 

  40. Puccetti, P. & Grohmann, U. IDO and regulatory T cells: a role for reverse signalling and non-canonical NF-κB activation. Nat. Rev. Immunol. 7, 817–823 (2007).

    CAS  PubMed  Google Scholar 

  41. Thornton, A.M. & Shevach, E.M. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tang, Q. et al. Distinct roles of CTLA-4 and TGF-β in CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2996–3005 (2004).

    CAS  PubMed  Google Scholar 

  43. Read, S. et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol. 177, 4376–4383 (2006).

    CAS  PubMed  Google Scholar 

  44. Chikuma, S. & Bluestone, J.A. Expression of CTLA-4 and FOXP3 in cis protects from lethal lymphoproliferative disease. Eur. J. Immunol. 37, 1285–1289 (2007).

    CAS  PubMed  Google Scholar 

  45. Travis, M.A. et al. Loss of integrin αvβ8 on dendritic cells causes autoimmunity and colitis in mice. Nature 449, 361–365 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pesu, M., Muul, L., Kanno, Y. & O'Shea, J.J. Proprotein convertase furin is preferentially expressed in T helper 1 cells and regulates interferon γ. Blood 108, 983–985 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    CAS  PubMed  Google Scholar 

  49. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med. 194, 629–644 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. You, S., Thieblemont, N., Alyanakian, M.A., Bach, J.F. & Chatenoud, L. Transforming growth factor-β and T-cell-mediated immunoregulation in the control of autoimmune diabetes. Immunol. Rev. 212, 185–202 (2006).

    CAS  PubMed  Google Scholar 

  51. Belkaid, Y., Piccirillo, C.A., Mendez, S., Shevach, E.M. & Sacks, D.L. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 420, 502–507 (2002).

    CAS  PubMed  Google Scholar 

  52. Maloy, K.J. et al. CD4+CD25+ TR cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med. 197, 111–119 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Li, M.O., Wan, Y.Y. & Flavell, R.A. T cell-produced transforming growth factor-β1 controls T cell tolerance and regulates Th1- and Th17-cell differentiation. Immunity 26, 579–591 (2007).

    CAS  PubMed  Google Scholar 

  54. Wilson, M.S. et al. Suppression of allergic airway inflammation by helminth-induced regulatory T cells. J. Exp. Med. 202, 1199–1212 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Kullberg, M.C. et al. TGF-β1 production by CD4+ CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. Eur. J. Immunol. 35, 2886–2895 (2005).

    CAS  PubMed  Google Scholar 

  56. Choi, B.M., Pae, H.O., Jeong, Y.R., Kim, Y.M. & Chung, H.T. Critical role of heme oxygenase-1 in Foxp3-mediated immune suppression. Biochem. Biophys. Res. Commun. 327, 1066–1071 (2005).

    CAS  PubMed  Google Scholar 

  57. Xia, Z.W. et al. Heme oxygenase-1-mediated CD4+CD25high regulatory T cells suppress allergic airway inflammation. J. Immunol. 177, 5936–5945 (2006).

    CAS  PubMed  Google Scholar 

  58. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Kubach, J. et al. Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 110, 1550–1558 (2007).

    CAS  PubMed  Google Scholar 

  60. Garin, M.I. et al. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109, 2058–2065 (2007).

    CAS  PubMed  Google Scholar 

  61. Terness, P. et al. Tolerance signaling molecules and pregnancy: IDO, galectins, and the renaissance of regulatory T cells. Am. J. Reprod. Immunol. 58, 238–254 (2007).

    CAS  PubMed  Google Scholar 

  62. Collison, L.W. et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450, 566–569 (2007).

    CAS  PubMed  Google Scholar 

  63. Izcue, A., Coombes, J.L. & Powrie, F. Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol. Rev. 212, 256–271 (2006).

    CAS  PubMed  Google Scholar 

  64. Belkaid, Y., Blank, R.B. & Suffia, I. Natural regulatory T cells and parasites: a common quest for host homeostasis. Immunol. Rev. 212, 287–300 (2006).

    CAS  PubMed  Google Scholar 

  65. Strauss, L. et al. A unique subset of CD4+CD25highFoxp3++ T cells secreting interleukin-10 and transforming growth factor-β1 mediates suppression in the tumor microenvironment. Clin. Cancer Res. 13, 4345–4354 (2007).

    CAS  PubMed  Google Scholar 

  66. Hsieh, C.S. et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21, 267–277 (2004).

    CAS  PubMed  Google Scholar 

  67. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    CAS  PubMed  Google Scholar 

  68. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    CAS  PubMed  Google Scholar 

  69. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    CAS  PubMed  Google Scholar 

  71. Balasa, B., Van Gunst, K., Jung, N., Katz, J.D. & Sarvetnick, N. IL-10 deficiency does not inhibit insulitis and accelerates cyclophosphamide-induced diabetes in the nonobese diabetic mouse. Cell. Immunol. 202, 97–102 (2000).

    CAS  PubMed  Google Scholar 

  72. Suri-Payer, E. & Cantor, H. Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4+CD25+ T cells. J. Autoimmun. 16, 115–123 (2001).

    CAS  PubMed  Google Scholar 

  73. Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796 (2001).

    CAS  PubMed  Google Scholar 

  74. Green, E.A., Gorelik, L., McGregor, C.M., Tran, E.H. & Flavell, R.A. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-β-TGF-β receptor interactions in type 1 diabetes. Proc. Natl. Acad. Sci. USA 100, 10878–10883 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Belghith, M. et al. TGF-β-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat. Med. 9, 1202–1208 (2003).

    CAS  PubMed  Google Scholar 

  76. Piccirillo, C.A. et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor β1 production and responsiveness. J. Exp. Med. 196, 237–246 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Salomon, B. & Bluestone, J.A. Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    CAS  PubMed  Google Scholar 

  79. Kingsley, C.I., Karim, M., Bushell, A.R. & Wood, K.J. CD25+CD4+ regulatory T cells prevent graft rejection: CTLA-4- and IL-10-dependent immunoregulation of alloresponses. J. Immunol. 168, 1080–1086 (2002).

    CAS  PubMed  Google Scholar 

  80. Cao, X. et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity 27, 635–646 (2007).

    CAS  PubMed  Google Scholar 

  81. Sawitzki, B. et al. IFN-γ production by alloantigen-reactive regulatory T cells is important for their regulatory function in vivo. J. Exp. Med. 201, 1925–1935 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lu, L.F. et al. Mast cells are essential intermediaries in regulatory T-cell tolerance. Nature 442, 997–1002 (2006).

    CAS  PubMed  Google Scholar 

  83. Zelenay, S., Chora, A., Soares, M.P. & Demengeot, J. Heme oxygenase-1 is not required for mouse regulatory T cell development and function. Int. Immunol. 19, 11–18 (2007).

    CAS  PubMed  Google Scholar 

  84. Sato, K. et al. Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J. Immunol. 166, 4185–4194 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A Bluestone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Q., Bluestone, J. The Foxp3+ regulatory T cell: a jack of all trades, master of regulation. Nat Immunol 9, 239–244 (2008). https://doi.org/10.1038/ni1572

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1572

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing