Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes

Abstract

The genomic region encoding the miR-17-92 microRNA (miRNA) cluster is often amplified in lymphoma and other cancers, and cancer cells carrying this amplification have higher expression of miRNA in this cluster. Retroviral expression of miR-17-92 accelerates c-Myc-induced lymphoma development, but precisely how higher expression of miR-17-92 promotes lymphomagenesis remains unclear. Here we generated mice with higher expression of miR-17-92 in lymphocytes. These mice developed lymphoproliferative disease and autoimmunity and died prematurely. Lymphocytes from these mice showed more proliferation and less activation-induced cell death. The miR-17-92 miRNA suppressed expression of the tumor suppressor PTEN and the proapoptotic protein Bim. This mechanism probably contributed to the lymphoproliferative disease and autoimmunity of miR-17-92-transgenic mice and contributes to lymphoma development in patients with amplifications of the miR-17-92 coding region.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of miR-17-92 miRNA.
Figure 2: The miR-17-92-transgenic mice develop hyperplasia of peripheral lymphoid tissues and have a shorter life span.
Figure 3: Effect of increased miR-17-92 expression on peripheral lymphocytes.
Figure 4: Autoimmunity in miR-17-92-transgenic mice.
Figure 5: Enhanced proliferation and survival of miR-17-92-transgenic lymphocytes.
Figure 6: Cytokine expression in miR-17-92-transgenic T cells.
Figure 7: The miR-17-92 miRNA molecules control the expression of PTEN and Bim protein.
Figure 8: Accumulation of antigen-experienced T cells and germinal center B cells in PTEN and Bim compound-heterozygous mice.

Similar content being viewed by others

References

  1. Goodnow, C.C. Multistep pathogenesis of autoimmune disease. Cell 130, 25–35 (2007).

    Article  CAS  Google Scholar 

  2. Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    Article  CAS  Google Scholar 

  3. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P.P. Pten is essential for embryonic development and tumour suppression. Nat. Genet. 19, 348–355 (1998).

    Article  CAS  Google Scholar 

  4. Suzuki, A. et al. High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumor suppressor gene in mice. Curr. Biol. 8, 1169–1178 (1998).

    Article  CAS  Google Scholar 

  5. Podsypanina, K. et al. Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc. Natl. Acad. Sci. USA 96, 1563–1568 (1999).

    Article  CAS  Google Scholar 

  6. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    Article  CAS  Google Scholar 

  7. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  Google Scholar 

  8. Egle, A., Harris, A.W., Bouillet, P. & Cory, S. Bim is a suppressor of Myc-induced mouse B cell leukemia. Proc. Natl. Acad. Sci. USA 101, 6164–6169 (2004).

    Article  CAS  Google Scholar 

  9. Strasser, A. The role of BH3-only proteins in the immune system. Nat. Rev. Immunol. 5, 189–200 (2005).

    Article  CAS  Google Scholar 

  10. Strasser, A. & Bouillet, P. The control of apoptosis in lymphocyte selection. Immunol. Rev. 193, 82–92 (2003).

    Article  CAS  Google Scholar 

  11. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  Google Scholar 

  12. Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285, 2122–2125 (1999).

    Article  CAS  Google Scholar 

  13. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  14. Chen, C.Z. & Lodish, H.F. MicroRNAs as regulators of mammalian hematopoiesis. Semin. Immunol. 17, 155–165 (2005).

    Article  CAS  Google Scholar 

  15. Mendell, J.T. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4, 1179–1184 (2005).

    Article  CAS  Google Scholar 

  16. Calin, G.A. et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc. Natl. Acad. Sci. USA 101, 11755–11760 (2004).

    Article  CAS  Google Scholar 

  17. Calin, G.A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101, 2999–3004 (2004).

    Article  CAS  Google Scholar 

  18. Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    Article  CAS  Google Scholar 

  19. Ota, A. et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res. 64, 3087–3095 (2004).

    Article  CAS  Google Scholar 

  20. Zhang, B., Pan, X., Cobb, G.P. & Anderson, T.A. microRNAs as oncogenes and tumor suppressors. Dev. Biol. 302, 1–12 (2007).

    Article  CAS  Google Scholar 

  21. Tagawa, H. & Seto, M. A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia 19, 2013–2016 (2005).

    Article  CAS  Google Scholar 

  22. He, L. et al. A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  23. Tanzer, A. & Stadler, P.F. Molecular evolution of a microRNA cluster. J. Mol. Biol. 339, 327–335 (2004).

    Article  CAS  Google Scholar 

  24. de Boer, J. et al. Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur. J. Immunol. 33, 314–325 (2003).

    Article  CAS  Google Scholar 

  25. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  Google Scholar 

  26. Testi, R., Phillips, J.H. & Lanier, L.L. Leu 23 induction as an early marker of functional CD3/T cell antigen receptor triggering. Requirement for receptor cross-linking, prolonged elevation of intracellular [Ca++] and stimulation of protein kinase C. J. Immunol. 142, 1854–1860 (1989).

    CAS  PubMed  Google Scholar 

  27. Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat. Immunol. 2, 325–332 (2001).

    Article  CAS  Google Scholar 

  28. Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369, 327–329 (1994).

    Article  CAS  PubMed Central  Google Scholar 

  29. Snapper, C.M. & Paul, W.E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947 (1987).

    Article  CAS  PubMed Central  Google Scholar 

  30. Finkelman, F.D., Katona, I.M., Mosmann, T.R. & Coffman, R.L. IFN-γ regulates the isotypes of Ig secreted during in vivo humoral immune responses. J. Immunol. 140, 1022–1027 (1988).

    CAS  PubMed  Google Scholar 

  31. Snapper, C.M., Finkelman, F.D., Stefany, D., Conrad, D.H. & Paul, W.E. IL-4 induces co-expression of intrinsic membrane IgG1 and IgE by murine B cells stimulated with lipopolysaccharide. J. Immunol. 141, 489–498 (1988).

    CAS  PubMed  Google Scholar 

  32. Shparago, N. et al. IL-10 selectively regulates murine Ig isotype switching. Int. Immunol. 8, 781–790 (1996).

    Article  CAS  Google Scholar 

  33. Sosic, D., Richardson, J.A., Yu, K., Ornitz, D.M. & Olson, E.N. Twist regulates cytokine gene expression through a negative feedback loop that represses NF-κB activity. Cell 112, 169–180 (2003).

    Article  CAS  Google Scholar 

  34. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  35. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  36. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  37. Koralov, S.B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell (in the press).

  38. Lindsley, R.C., Thomas, M., Srivastava, B. & Allman, D. Generation of peripheral B cells occurs via two spatially and temporally distinct pathways. Blood 109, 2521–2528 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  39. Vinuesa, C.G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  Google Scholar 

  40. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    Article  CAS  PubMed Central  Google Scholar 

  41. Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U. & Segal, E. The role of site accessibility in microRNA target recognition. Nat. Genet. 39, 1278–1284 (2007).

    Article  CAS  Google Scholar 

  42. Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).

    Article  CAS  Google Scholar 

  43. O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V. & Mendell, J.T. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839–843 (2005).

    Article  CAS  Google Scholar 

  44. Sylvestre, Y. et al. An E2F/miR-20a autoregulatory feedback loop. J. Biol. Chem. 282, 2135–2143 (2007).

    Article  CAS  Google Scholar 

  45. Yamasaki, L. et al. Tumor induction and tissue atrophy in mice lacking E2F–1. Cell 85, 537–548 (1996).

    Article  CAS  Google Scholar 

  46. Field, S.J. et al. E2F–1 functions in mice to promote apoptosis and suppress proliferation. Cell 85, 549–561 (1996).

    Article  CAS  Google Scholar 

  47. Murga, M. et al. Mutation of E2F2 in mice causes enhanced T lymphocyte proliferation, leading to the development of autoimmunity. Immunity 15, 959–970 (2001).

    Article  CAS  Google Scholar 

  48. Zhu, J.W. et al. E2F1 and E2F2 determine thresholds for antigen-induced T-cell proliferation and suppress tumorigenesis. Mol. Cell. Biol. 21, 8547–8564 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  49. Sasaki, Y. et al. Canonical NF-κB activity, dispensable for B cell development, replaces BAFF-receptor signals and promotes B cell proliferation upon activation. Immunity 24, 729–739 (2006).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Ghitza, C. Aristoff, M. Curnutte, A. Monti, A. Tetreault, A. Pellerin and A. Shahsafaei for technical assistance; A. Krek and N. Rajewsky for bioinformatics support; M.C. Carrol (Immune Disease Institute) for providing fluorescein isothiocyanate–conjugated rabbit antibody to human C3d complement; K. Otipoby for intellectual input; and all members of the Rajewsky lab for discussions. Supported by the National Institutes of Health (AI064345 to K.R.), the European Union (MUGEN; K.R.), the Cancer Research Institute (C.X.), the Joint Program in Hematology and Transfusion Medicine at Harvard Medical School (T32 training grant to C.X. and L.S.) and the Portuguese Foundation for Science and Technology (D.P.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Rajewsky.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Tables 1–4 and Methods (PDF 1129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, C., Srinivasan, L., Calado, D. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 9, 405–414 (2008). https://doi.org/10.1038/ni1575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing