Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance

Abstract

CD25+CD4+ regulatory T cells in normal animals are engaged in the maintenance of immunological self-tolerance. We show here that glucocorticoid-induced tumor necrosis factor receptor family–related gene (GITR, also known as TNFRSF18)—a member of the tumor necrosis factor–nerve growth factor (TNF-NGF) receptor gene superfamily—is predominantly expressed on CD25+CD4+ T cells and on CD25+CD4+CD8 thymocytes in normal naïve mice. We found that stimulation of GITR abrogated CD25+CD4+ T cell–mediated suppression. In addition, removal of GITR-expressing T cells or administration of a monoclonal antibody to GITR produced organ-specific autoimmune disease in otherwise normal mice. Thus, GITR plays a key role in dominant immunological self-tolerance maintained by CD25+CD4+ regulatory T cells and could be a suitable molecular target for preventing or treating autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DTA-1 mAb recognizes GITR.
Figure 2: Expression of GITR on mouse lymphoid cells.
Figure 3: DTA-1 mAb abrogates suppression mediated by CD25+CD4+ T cells or thymocytes.
Figure 4: Effects of antibodies specific for TNFR family proteins on CD25+CD4+ T cell–mediated suppression.
Figure 5: Requirement for an active signal through GITR to CD25+CD4+ regulatory T cells for suppression.
Figure 6: Failure of activated GITRhi T cells derived from CD25CD4+ T cells to exert suppressive activity.
Figure 7: Development of in vivo and in vitro autoimmunity by eliminating GITRhi T cells or administration of DTA-1.

Similar content being viewed by others

References

  1. Shevach, E. M. Regulatory T cells in autoimmunity. Annu. Rev. Immunol. 18, 423–449 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Sakaguchi, S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell 101, 455–458 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Maloy, K. J. & Powrie, F. Regulatory T cells in the control of immune pathology. Nature Immunol. 2, 816–822 (2001).

    Article  CAS  Google Scholar 

  4. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 115, 1151–1164 (1995).

    Google Scholar 

  5. Asano, M., Toda, M., Sakaguchi, N. & Sakaguchi, S. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J. Exp. Med. 184, 387–396 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Suri-Payer, E., Amar, Z. A., Thornton, A. M. & Shevach, E. M. CD4+ CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  7. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  8. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+ CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Thornton, A. M. & Shevach, E. M. CD4+ CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Itoh, M. et al. Thymus and autoimmunity: production of CD25+ CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  12. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+ CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD4+ CD25+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Takahashi, T. et al. Immunologic self-tolerance maintained by CD4+ CD25+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nakamura, K., Kitani, A. & Strober, W. Cell contact-dependent immunosuppression by CD4+ CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor β. J. Exp. Med. 194, 629–644 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jordan, M. S. et al. Thymic selection of CD4+ CD25+ regulatory T cells induced by an agonist self-peptide. Nature Immunol. 2, 301–306 (2001).

    Article  CAS  Google Scholar 

  17. Nocentini G., L. et al. A new member of the tumor necrosis factor/nerve growth factor receptor family inhibits T cell receptor-induced apoptosis. Proc. Natl Acad. Sci. USA. 94, 9216–9221 (1997).

    Article  Google Scholar 

  18. Kwon, B. et al. Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand. J. Biol. Chem. 274, 6056–6061 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Gurney, A. L. et al. Identification of a new member of the tumor necrosis factor family and its receptor, a human ortholog of mouse GITR. Curr. Biol. 9, 216–218 (1999).

    Article  Google Scholar 

  20. Locksley, R. M., Killeen, N. & Lenardo, M. J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Nagata, S. & Golstein, P. The Fas death factor. Science 267, 1449–1456 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Kumanogoh, A. et al. Increased T cell autoreactivity in the absence of CD40-CD40 ligand interactions: a role of CD40 in regulatory T cell development. J. Immunol. 166, 353–360 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Bansal-Pakala, P., Jember, A. G. & Croft, M. Signaling through OX40 (CD134) breaks peripheral T-cell tolerance. Nature Med. 7, 907–912 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Watt T. H. & M. A. DeBenedette . T cell co-stimulatory molecules other than CD28. Curr. Opin. Immunol. 11, 286–293 (1999).

    Article  Google Scholar 

  25. Kwon, B., Youn, B. S. & Kwon, B. S. Functions of newly identified members of the tumor necrosis factor receptor/ligand superfamilies in lymphocytes. Curr. Opin. Immunol. 11, 340–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Toh, B. H., van Driel, I. R. & Gleeson, P. A. Pernicious anemia. New Eng. J. Med. 337, 1441–1448 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Weinberg, A. D., Vella, A. T. & Croft, M. OX-40: life beyond the effector T cell stage. Semin. Immunol. 10, 471–480 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Hendriks, J. et al. CD27 is required for generation and long-term maintenance of T cell immunity. Nature Immunol. 1, 433–440 (2000).

    Article  CAS  Google Scholar 

  29. Thompson, C. B. & Allison, J. P. The emerging role of CTLA-4 as an immune attenuator. Immunity 7, 445–450 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Bluestone, J. A. Is CTLA-4 a master switch for peripheral T cell tolerance? J. Immunol. 158, 1989–1993 (1997).

    CAS  PubMed  Google Scholar 

  31. Kuniyasu, Y. et al. Naturally anergic and suppressive CD25+ CD4+ T cells as a functionally and phenotypically distinct immnoregulatory T cell subpopulation. Int. Immunol. 8, 1145–1155 (2000).

    Article  Google Scholar 

  32. Sakaguchi, S. & Sakaguchi, N. Role of genetic factors in organ-specific autoimmune diseases induced by manipulating the thymus or T cells, and not self-antigens. Rev. Immunogenet. 2, 147–153 (2000).

    CAS  PubMed  Google Scholar 

  33. Sotomayor, E. M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med. 5, 780–787 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Melero, I. et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nature Med. 3, 682–685 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Weinberg, A. D. et al. Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J. Immunol. 164, 2160–2169 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Hara, M. et al. IL-10 is required for regulatory T cells to mediate tolerance to alloantigens in vivo. J. Immunol. 166, 3789–3796 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Taylor, P. A., Noelle, R. J. & Blazar, B. R. CD4+ CD25+ immune regulatory cells are required for induction of tolerance to alloantigen via costimulatory blockade. J. Exp. Med. 193, 1311–1318 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hall, B. M., Pearce, N. W., Gurley, K. E. & Dorsch, S. E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine. III. Further characterization of the CD4+ suppressor cell and its mechanisms of action. J. Exp. Med. 171, 141–157 (1990).

    Article  CAS  PubMed  Google Scholar 

  39. Shahinian, A. et al. Differential T cell co-stimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  40. Takabe, Y. et al. SRα promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol. Cell. Biol. 8, 466–472 (1998).

    Article  Google Scholar 

  41. Suda, T., Takahashi, T., Golstein, P. & Nagata, S. Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75, 1169–1178 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Kubota, H., Yokota, S., Yanagi, H. & Yura, T. Transcriptional regulation of the mouse cytosolic chaperonin subunit gene Ccta/t-complex polypeptide 1 by selenocysteine tRNA gene transcription activation factor family zinc finger proteins. J. Biol. Chem. 275, 28641–28648 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Sakaguchi, S., Fukuma, K., Kuribayashi, K. & Masuda, T. Organ-specific autoimmune diseases induced in mice by elimination of T-cell subset. I. Evidence for the active participation of T cells in natural self-tolerance: deficit of a T-cell subset as a possible cause of autoimmune disease. J. Exp. Med. 161, 72–86 (1985).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Suda, N. Hosokawa, H. Kubota, and T. Nomura for technical advice; T. Maruyama, M. Matsumoto and K. Ishihara for the reagents and cell lines; E. Moriizumi for histology; and K. Wood, S. Hori and T. Nomura for critically reading the manuscript. Supported by grants-in-aid from the Ministry of Education, Science, Sports and Culture, the Ministry of Human Welfare, Japan Society for the Promotion of Science, and the Organization for Pharmaceutical Safety and Research of Japan. A part of this work was reported at the annual meeting of Japanese Immunology Association on November 14, 2000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimon Sakaguchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Web Figure 1.

Staining of CD25+CD4+ T cells with Fab fragments of DTA-1 mAb. CD25+CD4+ T cells stimulated several times with anti-CD3 and IL-2 (as in Fig. 6) were stained with DTA-1 (a,c) or Fab fragments of DTA-1 (b,d) at concentrations of 3 μg/ml (bold lines). FITC-labeled antibody specific for heavy and light chains of rat Ig (a,b) or antibody specific for Fc portion of rat Ig (c,d) was used as the secondary antibody. Staining with the secondary antibody alone is shown as thin line in each figure. (GIF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimizu, J., Yamazaki, S., Takahashi, T. et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 3, 135–142 (2002). https://doi.org/10.1038/ni759

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni759

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing