Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms

Abstract

The regulation of receptor-like protein tyrosine phosphatases (RPTPs) is not well understood. Although CD45 can be negatively regulated by dimerization, how dimerization is modulated is unclear. Here we show that various isoforms of CD45 differentially homodimerize in T cells. The dimerization is modulated by the sialylation and O-glycosylation of alternatively spliced CD45 exons in the extracellular domain. Thus, the smallest isoform, CD45RO—which undergoes the least extracellular sialylation and O-glycosylation—homodimerizes with the highest efficiency, resulting in decreased signaling via the T cell receptor. Because CD45 is required for T cell activation, our findings may reveal a mechanism that contributes to the termination of the primary T cell response. Our results not only demonstrate the biological significance of alternative splicing in the immune system, but also suggest a model for regulating RPTP dimerization and function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Differential dimerization of CD45 isoforms in human peripheral T cells.
Figure 2: Differential homodimerization of CD45 isoforms in transfected T cells.
Figure 3: More efficient and rapid dimerization of CD45RO than CD45RABC.
Figure 4: Dimerization of CD45 independent of its intracellular domain.
Figure 5: Modulation of CD45 dimerization by the sialylation and O-glycosylation of the alternatively spliced exons in the extracellular domain.
Figure 6: Regulation of TCR signaling by isoform-differential homodimerization of CD45.
Figure 7: Wedge-dependent negative regulation of CD45 by dimerization.

Similar content being viewed by others

References

  1. Trowbridge, I.S. & Thomas, M.L. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu. Rev. Immunol. 12, 85–116 (1994).

    Article  CAS  Google Scholar 

  2. Bilwes, A.M., den Hertog, J., Hunter, T. & Noel, J.P. Structural basis for inhibition of receptor protein-tyrosine phosphatase-α by dimerization. Nature 382, 555–559 (1996).

    Article  CAS  Google Scholar 

  3. Desai, D.M., Sap, J., Schlessinger, J. & Weiss, A. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell 73, 541–554 (1993).

    Article  CAS  Google Scholar 

  4. Majeti, R., Bilwes, A.M., Noel, J.P., Hunter, T. & Weiss, A. Dimerization-induced inhibition of receptor protein tyrosine phosphatase function through an inhibitory wedge. Science 279, 88–91 (1998).

    Article  CAS  Google Scholar 

  5. Majeti, R. et al. An inactivating point mutation in the inhibitory wedge of CD45 causes lymphoproliferation and autoimmunity. Cell 103, 1059–1070 (2000).

    Article  CAS  Google Scholar 

  6. Birkeland, M.L., Johnson, P., Trowbridge, I.S. & Pure, E. Changes in CD45 isoform expression accompany antigen-induced murine T-cell activation. Proc. Natl. Acad. Sci. USA 86, 6734–6738 (1989).

    Article  CAS  Google Scholar 

  7. Lynch, K.W. & Weiss, A. A CD45 polymorphism associated with multiple sclerosis disrupts an exonic splicing silencer. J. Biol. Chem. 276, 24341–24347 (2001).

    Article  CAS  Google Scholar 

  8. Zilch, C.F. et al. A point mutation within CD45 exon A is the cause of variant CD45RA splicing in humans. Eur. J. Immunol. 28, 22–29 (1998).

    Article  CAS  Google Scholar 

  9. Jacobsen, M. et al. A point mutation in PTPRC is associated with the development of multiple sclerosis. Nature Genet. 26, 495–499 (2000).

    Article  CAS  Google Scholar 

  10. Barcellos, L.F. et al. PTPRC (CD45) is not associated with the development of multiple sclerosis in U.S. patients. Nature Genet. 29, 23–24 (2001).

    Article  CAS  Google Scholar 

  11. Bianca, M., Eckhart, S., Michael, H., Sebastian, S. & Jorg, E. PTPRC (CD45) is not associated with multiple sclerosis in a large cohort of German patients. BioMed Central Med. Genet. 3, 3 (2002).

    Google Scholar 

  12. Takeda, A., Wu, J.J. & Maizel, A.L. Evidence for monomeric and dimeric forms of CD45 associated with a 30-kDa phosphorylated protein. J. Biol. Chem. 267, 16651–16659 (1992).

    CAS  PubMed  Google Scholar 

  13. Symons, A., Willis, A.C. & Barclay, A.N. Domain organization of the extracellular region of CD45. Protein Eng. 12, 885–892 (1999).

    Article  CAS  Google Scholar 

  14. Dornan, S. et al. Differential association of CD45 isoforms with CD4 and CD8 regulates the actions of specific pools of p56lck tyrosine kinase in T cell antigen receptor signal transduction. J. Biol. Chem. 277, 1912–1918 (2002).

    Article  CAS  Google Scholar 

  15. Koretzky, G.A., Picus, J., Thomas, M.L. & Weiss, A. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 346, 66–68 (1990).

    Article  CAS  Google Scholar 

  16. Chu, D.H. et al. The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling. EMBO J. 15, 6251–6261 (1996).

    Article  CAS  Google Scholar 

  17. Deans, J.P., Boyd, A.W. & Pilarski, L.M. Transitions from high to low molecular weight isoforms of CD45 (T200) involve rapid activation of alternate mRNA splicing and slow turnover of surface CD45R. J. Immunol. 143, 1233–1238 (1989).

    CAS  PubMed  Google Scholar 

  18. Kingsley, D.M., Kozarsky, K.F., Hobbie, L. & Krieger, M. Reversible defects in O-linked glycosylation and LDL receptor expression in a UDP-Gal/UDP-GalNAc 4-epimerase deficient mutant. Cell 44, 749–759 (1986).

    Article  CAS  Google Scholar 

  19. Lynch, K.W. & Weiss, A. A model system for activation-induced alternative splicing of CD45 pre- mRNA in T cells implicates protein kinase C and Ras. Mol. Cell. Biol. 20, 70–80 (2000).

    Article  CAS  Google Scholar 

  20. Penninger, J.M., Irie-Sasaki, J., Sasaki, T. & Oliveira-dos-Santos, A.J. CD45: new jobs for an old acquaintance. Nature Immunol. 2, 389–396 (2001).

    Article  CAS  Google Scholar 

  21. Symons, A., Cooper, D.N. & Barclay, A.N. Characterization of the interaction between galectin-1 and lymphocyte glycoproteins CD45 and Thy-1. Glycobiology 10, 559–563 (2000).

    Article  CAS  Google Scholar 

  22. Demetriou, M., Granovsky, M., Quaggin, S. & Dennis, J.W. Negative regulation of T-cell activation and autoimmunity by Mgat5 N-glycosylation. Nature 409, 733–739 (2001).

    Article  CAS  Google Scholar 

  23. Hall, S.R., Heffernan, B.M., Thompson, N.T. & Rowan, W.C. CD4+ CD45RA+ and CD4+ CD45RO+ T cells differ in their TCR-associated signaling responses. Eur. J. Immunol. 29, 2098–2106 (1999).

    Article  CAS  Google Scholar 

  24. Farber, D.L., Acuto, O. & Bottomly, K. Differential T cell receptor-mediated signaling in naïve and memory CD4 T cells. Eur. J. Immunol. 27, 2094–2101 (1997)

    Article  CAS  Google Scholar 

  25. Dianzani, U. et al. Molecular associations on the T cell surface correlate with immunological memory. Eur. J. Immunol. 20, 2249–2257 (1990).

    Article  CAS  Google Scholar 

  26. Leitenberg, D., Boutin, Y., Lu, D.D. & Bottomly, K. Biochemical association of CD45 with the T cell receptor complex: regulation by CD45 isoform and during T cell activation. Immunity 10, 701–711 (1999).

    Article  CAS  Google Scholar 

  27. Novak, T.J. et al. Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity 1, 109–119 (1994).

    Article  CAS  Google Scholar 

  28. Leitenberg, D., Novak, T.J., Farber, D., Smith, B.R. & Bottomly, K. The extracellular domain of CD45 controls association with the CD4-T cell receptor complex and the response to antigen-specific stimulation. J. Exp. Med. 183, 249–259 (1996).

    Article  CAS  Google Scholar 

  29. Onodera, H., Motto, D.G., Koretzky, G.A. & Rothstein, D.M. Differential regulation of activation-induced tyrosine phosphorylation and recruitment of SLP-76 to Vav by distinct isoforms of the CD45 protein-tyrosine phosphatase. J. Biol. Chem. 271, 22225–22230 (1996).

    Article  CAS  Google Scholar 

  30. McKenney, D.W., Onodera, H., Gorman, L., Mimura, T. & Rothstein, D.M. Distinct isoforms of the CD45 protein-tyrosine phosphatase differentially regulate interleukin 2 secretion and activation signal pathways involving Vav in T cells. J. Biol. Chem. 270, 24949–24954 (1995).

    Article  CAS  Google Scholar 

  31. Chui, D., Ong, C.J., Johnson, P., Teh, H.S. & Marth, J.D. Specific CD45 isoforms differentially regulate T cell receptor signaling. EMBO J. 13, 798–807 (1994).

    Article  CAS  Google Scholar 

  32. Kozieradzki, I. et al. T cell development in mice cross-link splice variants of the protein tyrosine phosphatase CD45. J. Immunol. 158, 3130–3139 (1997).

    CAS  PubMed  Google Scholar 

  33. Sorokin, A., Lemmon, M.A., Ullrich, A. & Schlessinger, J. Stabilization of an active dimeric form of the epidermal growth factor receptor by introduction of an inter-receptor disulfide bond. J. Biol. Chem. 269, 9752–9759 (1994).

    CAS  PubMed  Google Scholar 

  34. Jiang, G. et al. Dimerization inhibits the activity of receptor-like protein-tyrosine phosphatase-α. Nature 401, 606–610 (1999).

    Article  CAS  Google Scholar 

  35. Jiang, G. & Hunter, T. Receptor signaling: when dimerization is not enough. Curr. Biol. 9, R568–571 (1999).

    Article  CAS  Google Scholar 

  36. Jiang, G., den Hertog, J. & Hunter, T. Receptor-like protein tyrosine phosphatase α homodimerizes on the cell surface. Mol. Cell. Biol. 20, 5917–5929 (2000).

    Article  CAS  Google Scholar 

  37. Tertoolen, L.G. et al. Dimerization of Receptor Protein-Tyrosine Phosphatase α in living cells. BioMed Central Cell Biol. 2, 8 (2001).

    CAS  Google Scholar 

  38. Petrone, A. & Sap, J. Emerging issues in receptor protein tyrosine phosphatase function: lifting fog or simply shifting? J. Cell Sci. 113, 2345–2354 (2000).

    CAS  PubMed  Google Scholar 

  39. Daum, G., Regenass, S., Sap, J., Schlessinger, J. & Fischer, E.H. Multiple forms of the human tyrosine phosphatase RPTP α. Isozymes and differences in glycosylation. J. Biol. Chem. 269, 10524–10528 (1994).

    CAS  PubMed  Google Scholar 

  40. O'Grady, P., Thai, T.C. & Saito, H. The laminin-nidogen complex is a ligand for a specific splice isoform of the transmembrane protein tyrosine phosphatase LAR. J. Cell Biol. 141, 1675–1684 (1998).

    Article  CAS  Google Scholar 

  41. van Oers, N.S., von Boehmer, H. & Weiss, A. The pre-T cell receptor (TCR) complex is functionally coupled to the TCRζ subunit. J. Exp. Med. 182, 1585–1590 (1995).

    Article  CAS  Google Scholar 

  42. Goldsmith, M.A., Desai, D.M., Schultz, T. & Weiss, A. Function of a heterologous muscarinic receptor in T cell antigen receptor signal transduction mutants. J. Biol. Chem. 264, 17190–17197 (1989).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the late M. Thomas for murine CD45RO and CD45RABC cDNA; L. Lanier for the mAb UCHL-1 to human RO and FITC-labeled mAb L48 to human RA; P. Johnson for RO2.2 antiserum to murine CD45; M. Krieger and S. Rosen for ldlD cells; S. M. Fu for mAb 235 to CD3; B. Schraven for LPAP antiserum; M. Hermiston for critical reading of this manuscript; and T. Meyer, K. Lynch, J. Liou and members of the Weiss lab for helpful discussions. Supported by NIH grants GM39553 and AI35297 (to A. W.) and the Rosalind Russell Medical Research Center for Arthritis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Weiss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Weiss, A. Negative regulation of CD45 by differential homodimerization of the alternatively spliced isoforms. Nat Immunol 3, 764–771 (2002). https://doi.org/10.1038/ni822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing