Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SIGIRR, a negative regulator of Toll-like receptor–interleukin 1 receptor signaling

Abstract

The Toll-like receptor–interleukin 1 receptor signaling (TLR–IL-1R) receptor superfamily is important in differentially recognizing pathogen products and eliciting appropriate immune responses. These receptors alter gene expression, mainly through the activation of nuclear factor-κB and activating protein 1. SIGIRR (single immunoglobulin IL-1R-related molecule), a member of this family that does not activate these factors, instead negatively modulates immune responses. Inflammation is enhanced in SIGIRR-deficient mice, as shown by their enhanced chemokine induction after IL-1 injection and reduced threshold for lethal endotoxin challenge. Cells from SIGIRR-deficient mice showed enhanced activation in response to either IL-1 or certain Toll ligands. Finally, biochemical analysis indicated that SIGIRR binds to the TLR–IL-1R signaling components in a ligand-dependent way. Our data show that SIGIRR functions as a biologically important modulator of TLR–IL-1R signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The expression of SIGIRR is cell- and tissue-specific and is down-regulated after immune challenge.
Figure 2: Overexpression of SIGIRR inhibits IL-1 and IL-18 signaling.
Figure 3: Targeted disruption of the mouse gene encoding SIGIRR.
Figure 4: SIGIRR-deficient mice show enhanced inflammatory responses to LPS and IL-1.
Figure 5: SIGIRR-deficient kidney cells show enhanced activation in response to LPS or IL-1.
Figure 6: Splenocytes from SIGIRR-deficient mice show enhanced activation in response to IL-1 or Toll ligands.
Figure 7: SIGIRR interacts with molecules involved in TLR–IL-1R signaling.

Similar content being viewed by others

References

  1. Dinarello, C.A. Interleukin-1. Cytokine Growth Factor Rev. 8, 253–265 (1997).

    Article  CAS  Google Scholar 

  2. Neumann, D., Kollewe, C., Martin, M.U. & Boraschi, D. The membrane form of the type II IL-1 receptor accounts for inhibitory function. J. Immunol. 165, 3350–3357 (2000).

    Article  CAS  Google Scholar 

  3. Akira, S. The role of IL-18 in innate immunity. Curr. Opin. Immunol. 12, 59–63 (2000).

    Article  CAS  Google Scholar 

  4. Townsend, M.J., Fallon, P.G., Matthews, D.J., Jolin, H.E. & McKenzie, A.N. T1/ST2-deficient mice demonstrate the importance of T1/ST2 in developing primary T helper cell type 2 responses. J. Exp. Med. 191, 1069–1076 (2000).

    Article  CAS  Google Scholar 

  5. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  6. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  Google Scholar 

  7. Ozinsky, A. et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci. USA 97, 13766–13771 (2000).

    Article  CAS  Google Scholar 

  8. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  Google Scholar 

  9. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  Google Scholar 

  10. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749–3752 (1999).

    CAS  Google Scholar 

  11. Dunne, A. & O'Neill, L.A. The interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003, re3 (2003).

  12. Muzio, M., Ni, J., Feng, P. & Dixit, V.M. IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278, 1612–1615 (1997).

    Article  CAS  Google Scholar 

  13. Wesche, H., Henzel, W.J., Shillinglaw, W., Li, S. & Cao, Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7, 837–847 (1997).

    Article  CAS  Google Scholar 

  14. Burns, K. et al. MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 273, 12203–12209 (1998).

    Article  CAS  Google Scholar 

  15. Cao, Z., Henzel, W.J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128–1131 (1996).

    Article  CAS  Google Scholar 

  16. Li, S., Strelow, A., Fontana, E.J. & Wesche, H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase. Proc. Natl. Acad. Sci. USA 99, 5567–5572 (2002).

    Article  CAS  Google Scholar 

  17. Jiang, Z. et al. Pellino 1 is required for Interleukin-1 (IL-1)-mediated signaling through its interaction with the IL-1 receptor-associated kinase 4 (IRAK4)-IRAK-tumor necrosis factor receptor-associated factor 6 (TRAF6) complex. J. Biol. Chem. 278, 10952–10956 (2003).

    Article  CAS  Google Scholar 

  18. Jiang, Z., Ninomiya-Tsuji, J., Qian, Y., Matsumoto, K. & Li, X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol. Cell. Biol. 22, 7158–7167 (2002).

    Article  CAS  Google Scholar 

  19. Takaesu, G. et al. Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK1 by inducing TAB2 translocation in the IL-1 signaling pathway. Mol. Cell. Biol. 21, 2475–2484 (2001).

    Article  CAS  Google Scholar 

  20. Regnier, C.H. et al. Identification and characterization of an IκB kinase. Cell 90, 373–383 (1997).

    Article  CAS  Google Scholar 

  21. Mercurio, F. et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278, 860–866 (1997).

    Article  CAS  Google Scholar 

  22. Jiang, Z. et al. Poly I:C-induced TLR3-mediated activation of NF-κB and MAP kinases is through an IRAK-independent pathway employing signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J. Biol. Chem. 278, 16713–16719 (2003).

    Article  CAS  Google Scholar 

  23. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  Google Scholar 

  24. Imler, J.L. & Hoffmann, J.A. Toll signaling: the TIReless quest for specificity. Nat. Immunol. 4, 105–106 (2003).

    Article  CAS  Google Scholar 

  25. Glauser, M.P. Pathophysiologic basis of sepsis: considerations for future strategies of intervention. Crit. Care. Med. 28, S4–8 (2000).

    Article  CAS  Google Scholar 

  26. Ardizzone, S. & Porro, G.B. Inflammatory bowel disease: new insights into pathogenesis and treatment. J. Intern. Med. 252, 475–496 (2002).

    Article  CAS  Google Scholar 

  27. Bingham, C.O., III. The pathogenesis of rheumatoid arthritis: pivotal cytokines involved in bone degradation and inflammation. J. Rheumatol. Suppl. 65, 3–9 (2002).

    CAS  PubMed  Google Scholar 

  28. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  Google Scholar 

  29. Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003).

    Article  Google Scholar 

  30. Janssens, S., Burns, K., Tschopp, J. & Beyaert, R. Regulation of interleukin-1- and lipopolysaccharide-induced NF-κB activation by alternative splicing of MyD88. Curr. Biol. 12, 467–471 (2002).

    Article  CAS  Google Scholar 

  31. Thomassen, E., Renshaw, B.R. & Sims, J.E. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily. Cytokine 11, 389–399 (1999).

    Article  CAS  Google Scholar 

  32. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D.V. TRAF6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996).

    Article  CAS  Google Scholar 

  33. Saccani, S., Polentarutti, N., Penton-Rol, G., Sims, J.E. & Mantovani, A. Divergent effects of LPS on expression of IL-1 receptor family members in mononuclear phagocytes in vitro and in vivo. Cytokine 10, 773–780 (1998).

    Article  CAS  Google Scholar 

  34. Penton-Rol, G. et al. Bacterial lipopolysaccharide causes rapid shedding, followed by inhibition of mRNA expression, of the IL-1 type II receptor, with concomitant up-regulation of the type I receptor and induction of incompletely spliced transcripts. J. Immunol. 162, 2931–2938 (1999).

    CAS  PubMed  Google Scholar 

  35. Mosley, B. et al. The murine interleukin-4 receptor: molecular cloning and characterization of secreted and membrane bound forms. Cell 59, 335–348 (1989).

    Article  CAS  Google Scholar 

  36. Mitchell, T. & Sugden, B. Stimulation of NF-κB-mediated transcription by mutant derivatives of the latent membrane protein of Epstein-Barr virus. J. Virol. 69, 2968–2976 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (grant GM 600020 to X.L.) and by Amgen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxia Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wald, D., Qin, J., Zhao, Z. et al. SIGIRR, a negative regulator of Toll-like receptor–interleukin 1 receptor signaling. Nat Immunol 4, 920–927 (2003). https://doi.org/10.1038/ni968

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing