Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Development of a novel mouse glioma model using lentiviral vectors

Abstract

We report the development of a new method to induce glioblastoma multiforme in adult immunocompetent mice by injecting Cre-loxP–controlled lentiviral vectors expressing oncogenes. Cell type- or region-specific expression of activated forms of the oncoproteins Harvey-Ras and AKT in fewer than 60 glial fibrillary acidic protein–positive cells in the hippocampus, subventricular zone or cortex of mice heterozygous for the gene encoding the tumor suppressor Tp53 were tested. Mice developed glioblastoma multiforme when transduced either in the subventricular zone or the hippocampus. However, tumors were rarely detected when the mice were transduced in the cortex. Transplantation of brain tumor cells into naive recipient mouse brain resulted in the formation of glioblastoma multiforme–like tumors, which contained CD133+ cells, formed tumorspheres and could differentiate into neurons and astrocytes. We suggest that the use of Cre-loxP–controlled lentiviral vectors is a novel way to generate a mouse glioblastoma multiforme model in a region- and cell type-specific manner in adult mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cre recombinase–dependent expression of Flag H-RasV12 by pTomo H-RasV12 lentiviral vectors in vitro and in vivo.
Figure 2: Brain tumors induced by combined activation of H-Ras and AKT in GFAP-Cre mice.
Figure 3: Effects of p53 loss on tumor formation induced by combined activation of H-Ras and AKT.
Figure 4: Tumors induced by combined activation of H-Ras and AKT in GFAP-Cre Tp53+/− mice contain the cells expressing various cell markers including astrocytes, oligodendrocytes and neurons.
Figure 5: 005 tumor cells show the characteristics of BTICs.

Similar content being viewed by others

References

  1. Hesselager, G. & Holland, E.C. Using mice to decipher the molecular genetics of brain tumors. Neurosurgery 53, 685–694; discussion 695 (2003).

    Article  PubMed  Google Scholar 

  2. Holland, E.C. Glioblastoma multiforme: the terminator. Proc. Natl. Acad. Sci. USA 97, 6242–6244 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Holland, E.C. Gliomagenesis: genetic alterations and mouse models. Nat. Rev. Genet. 2, 120–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Vescovi, A.L., Galli, R. & Reynolds, B.A. Brain tumour stem cells. Nat. Rev. Cancer 6, 425–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Kafri, T., Blomer, U., Peterson, D.A., Gage, F.H. & Verma, I.M. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat. Genet. 17, 314–317 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Abremski, K., Hoess, R. & Sternberg, N. Studies on the properties of P1 site-specific recombination: evidence for topologically unlinked products following recombination. Cell 32, 1301–1311 (1983).

    Article  CAS  PubMed  Google Scholar 

  7. Guha, A., Feldkamp, M.M., Lau, N., Boss, G. & Pawson, A. Proliferation of human malignant astrocytomas is dependent on Ras activation. Oncogene 15, 2755–2765 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Doetsch, F., Caille, I., Lim, D.A. & Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Zhuo, L. et al. hGFAP-Cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31, 85–94 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Malatesta, P. et al. Neuronal or glial progeny: regional differences in radial glia fate. Neuron 37, 751–764 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Holland, E.C. et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat. Genet. 25, 55–57 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Steck, P.A. et al. Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat. Genet. 15, 356–362 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275, 1943–1947 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Ekstrand, A.J. et al. Functional characterization of an EGF receptor with a truncated extracellular domain expressed in glioblastomas with EGFR gene amplification. Oncogene 9, 2313–2320 (1994).

    CAS  PubMed  Google Scholar 

  15. Maher, E.A. et al. Malignant glioma: genetics and biology of a grave matter. Genes Dev. 15, 1311–1333 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Lang, F.F., Miller, D.C., Koslow, M. & Newcomb, E.W. Pathways leading to glioblastoma multiforme: a molecular analysis of genetic alterations in 65 astrocytic tumors. J. Neurosurg. 81, 427–436 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Watanabe, K. et al. Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6, 217–223; discussion 223–214 (1996).

    Article  CAS  PubMed  Google Scholar 

  18. Dahlstrand, J., Collins, V.P. & Lendahl, U. Expression of the class VI intermediate filament nestin in human central nervous system tumors. Cancer Res. 52, 5334–5341 (1992).

    CAS  PubMed  Google Scholar 

  19. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barak, Y., Juven, T., Haffner, R. & Oren, M. Mdm2 expression is induced by wild type p53 activity. EMBO J. 12, 461–468 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Houchens, D.P., Ovejera, A.A., Riblet, S.M. & Slagel, D.E. Human brain tumor xenografts in nude mice as a chemotherapy model. Eur. J. Cancer Clin. Oncol. 19, 799–805 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, B. et al. Angiopoietin-2 induces human glioma invasion through the activation of matrix metalloprotease-2. Proc. Natl. Acad. Sci. USA 100, 8904–8909 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Finkelstein, S.D. et al. Histological characteristics and expression of acidic and basic fibroblast growth factor genes in intracerebral xenogeneic transplants of human glioma cells. Neurosurgery 34, 136–143 (1994).

    CAS  PubMed  Google Scholar 

  26. Uhrbom, L., Hesselager, G., Nister, M. & Westermark, B. Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer Res. 58, 5275–5279 (1998).

    CAS  PubMed  Google Scholar 

  27. Holland, E.C. & Varmus, H.E. Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc. Natl. Acad. Sci. USA 95, 1218–1223 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Garcia, A.D., Doan, N.B., Imura, T., Bush, T.G. & Sofroniew, M.V. GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat. Neurosci. 7, 1233–1241 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Lantos, P.L. & Cox, D.J. The origin of experimental brain tumours: a sequential study. Experientia 32, 1467–1468 (1976).

    Article  CAS  PubMed  Google Scholar 

  30. Dull, T. et al. A third-generation lentivirus vector with a conditional packaging system. J. Virol. 72, 8463–8471 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Ikawa, M., Tanaka, N., Kao, W.W. & Verma, I.M. Generation of transgenic mice using lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol. Ther. 8, 666–673 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Ray, J. & Gage, F.H. Differential properties of adult rat and mouse brain-derived neural stem/progenitor cells. Mol. Cell. Neurosci. 31, 560–573 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Marumoto, T. et al. Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J. Biol. Chem. 278, 51786–51795 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Gage, F.H. et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc. Natl. Acad. Sci. USA 92, 11879–11883 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gagneux, P. et al. Human-specific regulation of α 2–6-linked sialic acids. J. Biol. Chem. 278, 48245–48250 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Shaw for discussions and critical reading of the manuscript; N. Varki and H. Powell for pathological analyses; S. Ylä-Herttuala, K. Suzuki, N. Tanaka, G. Pao, A. Parker and H. Suh for useful discussions; T. Sawai, G. Estepa and M. Lawrence for technical assistance; M. Schmitt and B. Coyne for administrative assistance; and S. Withoff (St. Jude Hospital), V. Tergaonkar (Bioprocessing Technology Institute), O. Singer (Salk Institute) and G. Wahl (Salk Institute) for providing pSETB mRFP1, pGEM H-RasV12, p156RRLsin PPTCMVIRESPRE myr-AKT vectors and Tp53−/− mice, respectively. T.M. is supported by the American Brain Tumor Association. I.M.V. is an American Cancer Society Professor of Molecular Biology and is supported in part by grants from the US National Institutes of Health and the H.N. and Frances C. Berger Foundation. The project described was supported in part by the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

T.M. conducted most of the experiments, prepared figures and wrote the manuscript. A.T., D.F.-M. and Y.S. participated in in vivo studies and histological analysis. M.S. performed MRI imaging. F.H.G. supervised the experiments and the project. I.M.V. is the principle investigator, supervised the experiments and the project and wrote the manuscript.

Corresponding author

Correspondence to Inder M Verma.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–8 and Supplementary Tables 1–3 (PDF 1522 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marumoto, T., Tashiro, A., Friedmann-Morvinski, D. et al. Development of a novel mouse glioma model using lentiviral vectors. Nat Med 15, 110–116 (2009). https://doi.org/10.1038/nm.1863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing