Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Robust tumor immunity to melanoma mediated by interleukin-9–producing T cells

Abstract

Interleukin-9 (IL-9) is a T cell cytokine that acts through a γC-family receptor on target cells and is associated with inflammation and allergy. We determined that T cells from mice deficient in the T helper type 17 (TH17) pathway genes encoding retinoid-related orphan receptor γ (ROR-γ) and IL-23 receptor (IL-23R) produced abundant IL-9, and we found substantial growth inhibition of B16F10 melanoma in these mice. IL-9–blocking antibodies reversed this tumor growth inhibition and enhanced tumor growth in wild-type (WT) mice. Il9r−/− mice showed accelerated tumor growth, and administration of recombinant IL-9 (rIL-9) to tumor-bearing WT and Rag1−/− mice inhibited melanoma as well as lung carcinoma growth. Adoptive transfer of tumor-antigen–specific TH9 cells into both WT and Rag1−/− mice suppressed melanoma growth; this effect was abrogated by treatment with neutralizing antibodies to IL-9. Exogenous rIL-9 inhibited tumor growth in Rag1−/− mice but not in mast-cell–deficient mice, suggesting that the targets of IL-9 in this setting include mast cells but not T or B cells. In addition, we found higher numbers of TH9 cells in normal human skin and blood compared to metastatic lesions of subjects with progressive stage IV melanoma. These results suggest a role for IL-9 in tumor immunity and offer insight into potential therapeutic strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deficiency of ROR-γ is associated with inhibited melanoma growth and high amounts of tumor lymphocytic infiltration.
Figure 2: High IL-9 expression in ROR-γ T cells.
Figure 3: The role of IL-9 in melanoma immunity in Il23r−/− mice.
Figure 4: TH9 cells inhibit melanoma growth.
Figure 5: Abrogation of IL-9–IL-9R signaling promotes, and treatment with rIL-9 inhibits melanoma development.
Figure 6: The presence of TH9 cells in human skin and peripheral blood.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Hodi, F.S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Topalian, S.L. et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. N. Engl. J. Med. published online doi:10.1056/NEJMoa1200690 (2 June 2012).

  3. Mumberg, D. et al. CD4+ T cells eliminate MHC class II–negative cancer cells in vivo by indirect effects of IFN-γ. Proc. Natl. Acad. Sci. USA 96, 8633–8638 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perez-Diez, A. et al. CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 109, 5346–5354 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Quezada, S.A. et al. Tumor-reactive CD4+ T cells develop cytotoxic activity and eradicate large established melanoma after transfer into lymphopenic hosts. J. Exp. Med. 207, 637–650 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Xie, Y. et al. Naive tumor-specific CD4+ T cells differentiated in vivo eradicate established melanoma. J. Exp. Med. 207, 651–667 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mattes, J. et al. Immunotherapy of cytotoxic T cell–resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J. Exp. Med. 197, 387–393 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kryczek, I. et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114, 1141–1149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martin-Orozco, N. et al. T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31, 787–798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Muranski, P. et al. Tumor-specific Th17-polarized cells eradicate large established melanoma. Blood 112, 362–373 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Numasaki, M. et al. Interleukin-17 promotes angiogenesis and tumor growth. Blood 101, 2620–2627 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Numasaki, M. et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2–dependent angiogenesis. J. Immunol. 175, 6177–6189 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, L. et al. IL-17 can promote tumor growth through an IL-6–Stat3 signaling pathway. J. Exp. Med. 206, 1457–1464 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ivanov, I.I., Zhou, L. & Littman, D.R. Transcriptional regulation of Th17 cell differentiation. Semin. Immunol. 19, 409–417 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jetten, A.M. & Joo, J.H. Retinoid-related orphan receptors (RORs): roles in cellular differentiation and development. Adv. Dev. Biol. 16, 313–355 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yang, X.O. et al. T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28, 29–39 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Tilley, S.L. et al. Retinoid-related orphan receptor gamma controls immunoglobulin production and Th1/Th2 cytokine balance in the adaptive immune response to allergen. J. Immunol. 178, 3208–3218 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Kurebayashi, S. et al. Retinoid-related orphan receptor γ (RORγ) is essential for lymphoid organogenesis and controls apoptosis during thymopoiesis. Proc. Natl. Acad. Sci. USA 97, 10132–10137 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elyaman, W. et al. IL-9 induces differentiation of TH17 cells and enhances function of FoxP3+ natural regulatory T cells. Proc. Natl. Acad. Sci. USA 106, 12885–12890 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmitt, E. et al. IL-9 production of naive CD4+ T cells depends on IL-2, is synergistically enhanced by a combination of TGF-β and IL-4, and is inhibited by IFN-γ. J. Immunol. 153, 3989–3996 (1994).

    CAS  PubMed  Google Scholar 

  21. Dardalhon, V. et al. IL-4 inhibits TGF-β–induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3 effector T cells. Nat. Immunol. 9, 1347–1355 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Angkasekwinai, P., Chang, S.H., Thapa, M., Watarai, H. & Dong, C. Regulation of IL-9 expression by IL-25 signaling. Nat. Immunol. 11, 250–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wong, M.T. et al. Regulation of human Th9 differentiation by type I interferons and IL-21. Immunol. Cell Biol. 88, 624–631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hung, K. et al. The central role of CD4+ T cells in the antitumor immune response. J. Exp. Med. 188, 2357–2368 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Knoops, L. & Renauld, J.C. IL-9 and its receptor: from signal transduction to tumorigenesis. Growth Factors 22, 207–215 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Kearley, J. et al. IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am. J. Respir. Crit. Care Med. 183, 865–875 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Forbes, E.E. et al. IL-9– and mast cell–mediated intestinal permeability predisposes to oral antigen hypersensitivity. J. Exp. Med. 205, 897–913 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oldford, S.A. et al. A critical role for mast cells and mast cell–derived IL-6 in TLR2-mediated inhibition of tumor growth. J. Immunol. 185, 7067–7076 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Yang, X.R. et al. Identification of modifier genes for cutaneous malignant melanoma in melanoma-prone families with and without CDKN2A mutations. Int. J. Cancer 125, 2912–2917 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, S.E., Hoelzinger, D.B., Dominguez, A.L., Van Snick, J. & Lustgarten, J. Signals through 4–1BB inhibit T regulatory cells by blocking IL-9 production enhancing antitumor responses. Cancer Immunol. Immunother. 60, 1775–1787 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Atkins, M.B., Kunkel, L., Sznol, M. & Rosenberg, S.A. High-dose recombinant interleukin-2 therapy in patients with metastatic melanoma: long-term survival update. Cancer J. Sci. Am. 6 (suppl. 1), S11–S14 (2000).

    PubMed  Google Scholar 

  32. Dougan, M. & Dranoff, G. Immune therapy for cancer. Annu. Rev. Immunol. 27, 83–117 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Ma, H.L. et al. IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require perforin but are independent of IFN-γ. J. Immunol. 171, 608–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Restifo, N.P., Dudley, M.E. & Rosenberg, S.A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Amos, S.M. et al. Adoptive immunotherapy combined with intratumoral TLR agonist delivery eradicates established melanoma in mice. Cancer Immunol. Immunother. 60, 671–683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zou, W. & Restifo, N.P. TH17 cells in tumour immunity and immunotherapy. Nat. Rev. Immunol. 10, 248–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schumacher, T.N. & Restifo, N.P. Adoptive T cell therapy of cancer. Curr. Opin. Immunol. 21, 187–189 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Muranski, P. & Restifo, N.P. Adoptive immunotherapy of cancer using CD4+ T cells. Curr. Opin. Immunol. 21, 200–208 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Steenwinckel, V. et al. IL-13 mediates in vivo IL-9 activities on lung epithelial cells but not on hematopoietic cells. J. Immunol. 178, 3244–3251 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Purwar, R. et al. Resident memory T cells (TRM) are abundant in human lung: diversity, function, and antigen specificity. PLoS ONE 6, e16245 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clark, R.A. et al. A novel method for the isolation of skin resident T cells from normal and diseased human skin. J. Invest. Dermatol. 126, 1059–1070 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. O'Leary, F.M. et al. Injury-induced GR-1+ macrophage expansion and activation occurs independently of CD4 T-cell influence. Shock 36, 162–169 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from US National Institutes of Health to T.S.K. (R01 AI-041707, R01 AI-097128 and P50 CA-093683), R.A.C. (R01-AR-056720 and R03-MH-095529) and A.M.J. (Z01-ES-101586). R.P. received a Research Grant Award from The Skin Cancer Foundation. The authors thank K. Gerrish (US National Institutes of Health) with his help with the microarray analysis. J.-C. Renauld39 (Ludwig Institute, Belgium) provided Il9r−/− mice and the corresponding control mice (Il9r+/−). Neutralizing antibodies to IL-9 (MM9C1) were a kind gift from J.v. Snick (Ludwig Institute, Belgium). Salary support for C.S. was provided by the Swiss National Science Foundation and the Foundation Rene Touraine and for R.A.C. from a Damon Runyon Clinical Investigator Award.

Author information

Authors and Affiliations

Authors

Contributions

R.P. designed the study, performed and analyzed the experiments, and wrote the manuscript. S.X. and H.S.K. performed experiments. W.E., A.M.J., S.J.K. and V.K.K. discussed the data, provided reagents and edited the manuscript. X.J. provided reagents. C.S., R.A.C. and R.C.F. performed the human T cell experiments, discussed the data and edited the manuscript. T.S.K. designed the study, analyzed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Thomas S Kupper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 681 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purwar, R., Schlapbach, C., Xiao, S. et al. Robust tumor immunity to melanoma mediated by interleukin-9–producing T cells. Nat Med 18, 1248–1253 (2012). https://doi.org/10.1038/nm.2856

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2856

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer