Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ubiquitination in disease pathogenesis and treatment

Abstract

Ubiquitination is crucial for a plethora of physiological processes, including cell survival and differentiation and innate and adaptive immunity. In recent years, considerable progress has been made in the understanding of the molecular action of ubiquitin in signaling pathways and how alterations in the ubiquitin system lead to the development of distinct human diseases. Here we describe the role of ubiquitination in the onset and progression of cancer, metabolic syndromes, neurodegenerative diseases, autoimmunity, inflammatory disorders, infection and muscle dystrophies. Moreover, we indicate how current knowledge could be exploited for the development of new clinical therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ubiquitination and cancer.
Figure 2: Ubiquitination and immune pathologies.
Figure 3: Ubiquitination and neurodegeneration.
Figure 4: The ubiquitination enzymes and reactions with points of targeting intervention and agents are indicated.

Similar content being viewed by others

References

  1. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Grabbe, C., Husnjak, K. & Dikic, I. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 12, 295–307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schwartz, A.L. & Ciechanover, A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol. 49, 73–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Hoeller, D. & Dikic, I. Targeting the ubiquitin system in cancer therapy. Nature 458, 438–444 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Richardson, P.G. et al. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348, 2609–2617 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Hideshima, T. et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res. 61, 3071–3076 (2001).

    CAS  PubMed  Google Scholar 

  7. Lipkowitz, S. & Weissman, A.M. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat. Rev. Cancer 11, 629–643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirkin, V. & Dikic, I. Ubiquitin networks in cancer. Curr. Opin. Genet. Dev. 21, 21–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Wade, M., Li, Y.C. & Wahl, G.M. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat. Rev. Cancer 13, 83–96 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frescas, D. & Pagano, M. Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nat. Rev. Cancer 8, 438–449 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sheaff, R.J., Groudine, M., Gordon, M., Roberts, J.M. & Clurman, B.E. Cyclin E-CDK2 is a regulator of p27Kip1. Genes Dev. 11, 1464–1478 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt, M.H. & Dikic, I. The Cbl interactome and its functions. Nat. Rev. Mol. Cell Biol. 6, 907–918 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Gnarra, J.R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat. Genet. 7, 85–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Kanno, H. et al. Somatic mutations of the von Hippel-Lindau tumor suppressor gene in sporadic central nervous system hemangioblastomas. Cancer Res. 54, 4845–4847 (1994).

    CAS  PubMed  Google Scholar 

  15. Maxwell, P.H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Reyes-Turcu, F.E., Ventii, K.H. & Wilkinson, K.D. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu. Rev. Biochem. 78, 363–397 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Hymowitz, S.G. & Wertz, I.E. A20: from ubiquitin editing to tumour suppression. Nat. Rev. Cancer 10, 332–341 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Bignell, G.R. et al. Identification of the familial cylindromatosis tumour-suppressor gene. Nat. Genet. 25, 160–165 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Dey, A. et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science 337, 1541–1546 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sasaki, A.T. et al. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci. Signal. 4, ra13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Williams, S.A. et al. USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell 146, 918–930 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Pereg, Y. et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat. Cell Biol. 12, 400–406 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Massoumi, R. CYLD: a deubiquitination enzyme with multiple roles in cancer. Future Oncol. 7, 285–297 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Bonnet, M. & Courtois, G. CYLD deubiquitinase as a recurrent target in oncogenic processes. Med. Sci. (Paris) 27, 626–631 (2011) [transl].

    Article  Google Scholar 

  25. Xu, L., Lubkov, V., Taylor, L.J. & Bar-Sagi, D. Feedback regulation of Ras signaling by Rabex-5–mediated ubiquitination. Curr. Biol. 20, 1372–1377 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, S.E. et al. H-Ras is degraded by Wnt/β-catenin signaling via β-TrCP-mediated polyubiquitylation. J. Cell Sci. 122, 842–848 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Baker, R. et al. Site-specific monoubiquitination activates Ras by impeding GTPase-activating protein function. Nat. Struct. Mol. Biol. 20, 46–52 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Sasaki, A.T. et al. Ubiquitination of K-Ras enhances activation and facilitates binding to select downstream effectors. Sci. Signal. 4, ra13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Luo, J.L., Kamata, H. & Karin, M. IKK/NF-κB signaling: balancing life and death—a new approach to cancer therapy. J. Clin. Invest. 115, 2625–2632 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715–723 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Vucic, D., Dixit, V.M. & Wertz, I.E. Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death. Nat. Rev. Mol. Cell Biol. 12, 439–452 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Keats, J.J. et al. Promiscuous mutations activate the noncanonical NF-κB pathway in multiple myeloma. Cancer Cell 12, 131–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Annunziata, C.M. et al. Frequent engagement of the classical and alternative NF-κB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12, 115–130 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Demchenko, Y.N. et al. Classical and/or alternative NF-κB pathway activation in multiple myeloma. Blood 115, 3541–3552 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pelzer, C. et al. The protease activity of the paracaspase MALT1 is controlled by monoubiquitination. Nat. Immunol. 14, 337–345 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Varfolomeev, E. et al. IAP antagonists induce autoubiquitination of c-IAPs, NF-κB activation, and TNFα-dependent apoptosis. Cell 131, 669–681 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Zender, L. et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach. Cell 125, 1253–1267 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kottemann, M.C. & Smogorzewska, A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 493, 356–363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698–1701 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Garcia-Higuera, I. et al. Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol. Cell 7, 249–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, T., Ghosal, G., Yuan, J., Chen, J. & Huang, J. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329, 693–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Lehmann, A.R. DNA repair-deficient diseases, xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Biochimie 85, 1101–1111 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Keeney, S., Chang, G.J. & Linn, S. Characterization of a human DNA damage binding protein implicated in xeroderma pigmentosum E. J. Biol. Chem. 268, 21293–21300 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Mattiroli, F. et al. RNF168 ubiquitinates K13–15 on H2A/H2AX to drive DNA damage signaling. Cell 150, 1182–1195 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Fradet-Turcotte, A. et al. 53BP1 is a reader of the DNA-damage-induced H2A Lys 15 ubiquitin mark. Nature 499, 50–54 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sharma, N. et al. USP3 counteracts RNF168 via deubiquitinating H2A and γH2AX at lysine 13 and 15. Cell Cycle 13, 106–114 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Mosbech, A., Lukas, C., Bekker-Jensen, S. & Mailand, N. The deubiquitylating enzyme USP44 counteracts the DNA double-strand break response mediated by the RNF8 and RNF168 ubiquitin ligases. J. Biol. Chem. 288, 16579–16587 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Masuda, Y. & Kamiya, K. Molecular nature of radiation injury and DNA repair disorders associated with radiosensitivity. Int. J. Hematol. 95, 239–245 (2012).

    Article  PubMed  Google Scholar 

  49. Stewart, G.S. et al. The RIDDLE syndrome protein mediates a ubiquitin-dependent signaling cascade at sites of DNA damage. Cell 136, 420–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  50. Blundred, R.M. & Stewart, G.S. DNA double-strand break repair, immunodeficiency and the RIDDLE syndrome. Expert Rev. Clin. Immunol. 7, 169–185 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Qu, X. et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809–1820 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mariño, G. et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3. J. Biol. Chem. 282, 18573–18583 (2007).

    Article  PubMed  Google Scholar 

  53. Takamura, A. et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795–800 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Takahashi, Y. et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol. 9, 1142–1151 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, M.S. et al. Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. Hum. Pathol. 39, 1059–1063 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. White, E. Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12, 401–410 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hashimoto, D. et al. Autophagy is needed for the growth of pancreatic adenocarcinoma and has a cytoprotective effect against anticancer drugs. Eur. J. Cancer 50, 1382–1390 (2014).

    Article  CAS  PubMed  Google Scholar 

  58. Yang, A. et al. Autophagy is critical for pancreatic tumor growth and progression in tumors with p53 alterations. Cancer Disc. 4, 905–913 (2014).

    Article  CAS  Google Scholar 

  59. Guo, J.Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lock, R. et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell 22, 165–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Guo, J.Y. et al. Autophagy suppresses progression of K-ras–induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 27, 1447–1461 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosenfeldt, M.T. et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 504, 296–300 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Aradhya, S. et al. Atypical forms of incontinentia pigmenti in male individuals result from mutations of a cytosine tract in exon 10 of NEMO (IKK-γ). Am. J. Hum. Genet. 68, 765–771 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Aradhya, S. et al. A recurrent deletion in the ubiquitously expressed NEMO (IKK-γ) gene accounts for the vast majority of incontinentia pigmenti mutations. Hum. Mol. Genet. 10, 2171–2179 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Courtois, G. & Israel, A. IKK regulation and human genetics. Curr. Top. Microbiol. Immunol. 349, 73–95 (2011).

    CAS  PubMed  Google Scholar 

  66. Bustamante, J., Picard, C., Boisson-Dupuis, S., Abel, L. & Casanova, J.L. Genetic lessons learned from X-linked Mendelian susceptibility to mycobacterial diseases. Ann. NY Acad. Sci. 1246, 92–101 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Rahighi, S. et al. Specific recognition of linear ubiquitin chains by NEMO is important for NF-κB activation. Cell 136, 1098–1109 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Seymour, R.E. et al. Spontaneous mutations in the mouse Sharpin gene result in multiorgan inflammation, immune system dysregulation and dermatitis. Genes Immun. 8, 416–421 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Pachlopnik Schmid, J. et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood 117, 1522–1529 (2011).

    Article  PubMed  CAS  Google Scholar 

  71. Marsh, R.A. et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood 116, 1079–1082 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Damgaard, R.B. et al. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46, 746–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Corn, J.E. & Vucic, D. Ubiquitin in inflammation: the right linkage makes all the difference. Nat. Struct. Mol. Biol. 21, 297–300 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Bennett, E.J., Bence, N.F., Jayakumar, R. & Kopito, R.R. Global impairment of the ubiquitin-proteasome system by nuclear or cytoplasmic protein aggregates precedes inclusion body formation. Mol. Cell 17, 351–365 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Lam, Y.A. et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 97, 9902–9906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tofaris, G.K., Razzaq, A., Ghetti, B., Lilley, K.S. & Spillantini, M.G. Ubiquitination of α-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J. Biol. Chem. 278, 44405–44411 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Anderson, J.P. et al. Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 281, 29739–29752 (2006).

    Article  CAS  PubMed  Google Scholar 

  79. Rott, R. et al. Monoubiquitylation of α-synuclein by seven in absentia homolog (SIAH) promotes its aggregation in dopaminergic cells. J. Biol. Chem. 283, 3316–3328 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Lee, J.T., Wheeler, T.C., Li, L. & Chin, L.S. Ubiquitination of α-synuclein by Siah-1 promotes α-synuclein aggregation and apoptotic cell death. Hum. Mol. Genet. 17, 906–917 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Meier, F. et al. Semisynthetic, site-specific ubiquitin modification of α-synuclein reveals differential effects on aggregation. J. Am. Chem. Soc. 134, 5468–5471 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Spratt, D.E. et al. A molecular explanation for the recessive nature of parkin-linked Parkinson's disease. Nat. Commun. 4, 1983 (2013).

    Article  PubMed  CAS  Google Scholar 

  83. Chen, Y. & Dorn, G.W. II. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340, 471–475 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Novak, I. Mitophagy: a complex mechanism of mitochondrial removal. Antioxid. Redox Signal. 17, 794–802 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Karbowski, M. & Youle, R.J. Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr. Opin. Cell Biol. 23, 476–482 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kane, L.A. et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell Biol. 205, 143–153 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Koyano, F. et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510, 162–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Kazlauskaite, A. et al. Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J. 460, 127–139 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Bingol, B. et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510, 370–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  90. Müller-Rischart, A.K. et al. The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. Mol. Cell 49, 908–921 (2013).

    Article  PubMed  CAS  Google Scholar 

  91. Tai, H.C. et al. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am. J. Pathol. 181, 1426–1435 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wong, H.K. et al. Blocking acid-sensing ion channel 1 alleviates Huntington's disease pathology via an ubiquitin-proteasome system-dependent mechanism. Hum. Mol. Genet. 17, 3223–3235 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Wang, Y. et al. Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum. Mol. Genet. 18, 4153–4170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wooten, M.W. et al. Essential role of sequestosome 1/p62 in regulating accumulation of Lys63-ubiquitinated proteins. J. Biol. Chem. 283, 6783–6789 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Babu, J.R., Geetha, T. & Wooten, M.W. Sequestosome 1/p62 shuttles polyubiquitinated tau for proteasomal degradation. J. Neurochem. 94, 192–203 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Wang, Y. et al. Synergy and antagonism of macroautophagy and chaperone-mediated autophagy in a cell model of pathological tau aggregation. Autophagy 6, 182–183 (2010).

    Article  PubMed  Google Scholar 

  97. Keck, S., Nitsch, R., Grune, T. & Ullrich, O. Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer's disease. J. Neurochem. 85, 115–122 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Schaeffer, V. & Goedert, M. Stimulation of autophagy is neuroprotective in a mouse model of human tauopathy. Autophagy 8, 1686–1687 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zucchelli, S. et al. Tumor necrosis factor receptor-associated factor 6 (TRAF6) associates with huntingtin protein and promotes its atypical ubiquitination to enhance aggregate formation. J. Biol. Chem. 286, 25108–25117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bennett, E.J. et al. Global changes to the ubiquitin system in Huntington's disease. Nature 448, 704–708 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Wang, J. et al. Impaired ubiquitin-proteasome system activity in the synapses of Huntington's disease mice. J. Cell Biol. 180, 1177–1189 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ravikumar, B. et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat. Genet. 36, 585–595 (2004).

    Article  CAS  PubMed  Google Scholar 

  103. Cohen, S. et al. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation. J. Cell Biol. 185, 1083–1095 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Glass, D.J. Molecular mechanisms modulating muscle mass. Trends Mol. Med. 9, 344–350 (2003).

    Article  CAS  PubMed  Google Scholar 

  105. Sacheck, J.M., Ohtsuka, A., McLary, S.C. & Goldberg, A.L. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. Am. J. Physiol. Endocrinol. Metab. 287, E591–E601 (2004).

    Article  CAS  PubMed  Google Scholar 

  106. Sandri, M. et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117, 399–412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stitt, T.N. et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell 14, 395–403 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Rommel, C. et al. Mediation of IGF-1–induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat. Cell Biol. 3, 1009–1013 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Lagirand-Cantaloube, J. et al. Inhibition of atrogin-1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS ONE 4, e4973 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Cohen, S., Zhai, B., Gygi, S.P. & Goldberg, A.L. Ubiquitylation by Trim32 causes coupled loss of desmin, Z-bands, and thin filaments in muscle atrophy. J. Cell Biol. 198, 575–589 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Quy, P.N., Kuma, A., Pierre, P. & Mizushima, N. Proteasome-dependent activation of mammalian target of rapamycin complex 1 (mTORC1) is essential for autophagy suppression and muscle remodeling following denervation. J. Biol. Chem. 288, 1125–1134 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Altun, M. et al. Muscle wasting in aged, sarcopenic rats is associated with enhanced activity of the ubiquitin proteasome pathway. J. Biol. Chem. 285, 39597–39608 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Arndt, V., Daniel, C., Nastainczyk, W., Alberti, S. & Hohfeld, J. BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol. Biol. Cell 16, 5891–5900 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Arndt, V. et al. Chaperone-assisted selective autophagy is essential for muscle maintenance. Curr. Biol. 20, 143–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Biddinger, S.B. & Kahn, C.R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68, 123–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Posner, B.I. Regulation of insulin receptor kinase activity by endosomal processes: possible areas for therapeutic intervention. Curr. Opin. Investig. Drugs 4, 430–434 (2003).

    CAS  PubMed  Google Scholar 

  117. White, M.F. IRS proteins and the common path to diabetes. Am. J. Physiol. Endocrinol. Metab. 283, E413–E422 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Rui, L., Yuan, M., Frantz, D., Shoelson, S. & White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem. 277, 42394–42398 (2002).

    Article  CAS  PubMed  Google Scholar 

  119. Donath, M.Y. & Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11, 98–107 (2011).

    Article  CAS  PubMed  Google Scholar 

  120. Kim, S.J. et al. mTOR complex 2 regulates proper turnover of insulin receptor substrate-1 via the ubiquitin ligase subunit Fbw8. Mol. Cell 48, 875–887 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Song, R. et al. Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. Nature 494, 375–379 (2013).

    Article  CAS  PubMed  Google Scholar 

  122. Hussein, M.A. Nontraditional cytotoxic therapies for relapsed/refractory multiple myeloma. Oncologist 7 (suppl. 1), 20–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  123. Cheson, B.D. Hematologic malignancies: new developments and future treatments. Semin. Oncol. 29, 33–45 (2002).

    Article  PubMed  Google Scholar 

  124. Lawasut, P. et al. New proteasome inhibitors in myeloma. Curr. Hematol. Malig. Rep. 7, 258–266 (2012).

    Article  PubMed  Google Scholar 

  125. Fostier, K., De Becker, A. & Schots, R. Carfilzomib: a novel treatment in relapsed and refractory multiple myeloma. Onco. Targets Ther. 5, 237–244 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Catley, L. et al. Aggresome induction by proteasome inhibitor bortezomib and α-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 108, 3441–3449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hideshima, T. et al. Perifosine, an oral bioactive novel alkylphospholipid, inhibits Akt and induces in vitro and in vivo cytotoxicity in human multiple myeloma cells. Blood 107, 4053–4062 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mitsiades, C.S. et al. Transcriptional signature of histone deacetylase inhibition in multiple myeloma: biological and clinical implications. Proc. Natl. Acad. Sci. USA 101, 540–545 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Kuhn, D.J. et al. Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113, 4667–4676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee, W. & Kim, K.B. The immunoproteasome: an emerging therapeutic target. Curr. Top. Med. Chem. 11, 2923–2930 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Basler, M., Dajee, M., Moll, C., Groettrup, M. & Kirk, C.J. Prevention of experimental colitis by a selective inhibitor of the immunoproteasome. J. Immunol. 185, 634–641 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Muchamuel, T. et al. A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat. Med. 15, 781–787 (2009).

    Article  CAS  PubMed  Google Scholar 

  133. Yang, Y. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 67, 9472–9481 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Xu, G.W. et al. The ubiquitin-activating enzyme E1 as a therapeutic target for the treatment of leukemia and multiple myeloma. Blood 115, 2251–2259 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Soucy, T.A. et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458, 732–736 (2009).

    Article  CAS  PubMed  Google Scholar 

  136. Wenzel, D.M., Stoll, K.E. & Klevit, R.E. E2s: structurally economical and functionally replete. Biochem. J. 433, 31–42 (2011).

    Article  CAS  PubMed  Google Scholar 

  137. Bedford, L., Lowe, J., Dick, L.R., Mayer, R.J. & Brownell, J.E. Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat. Rev. Drug Disc. 10, 29–46 (2011).

    Article  CAS  Google Scholar 

  138. Rape, M. Assembly of k11-linked ubiquitin chains by the anaphase-promoting complex. Subcell. Biochem. 54, 107–115 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Dou, H., Buetow, L., Sibbet, G.J., Cameron, K. & Huang, D.T. BIRC7–E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer. Nat. Struct. Mol. Biol. 19, 876–883 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Pruneda, J.N. et al. Structure of an E3:E2Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. Mol. Cell 47, 933–942 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Deshaies, R.J. & Joazeiro, C.A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Yang, Y. et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7, 547–559 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Li, Q. & Lozano, G. Molecular pathways: targeting Mdm2 and Mdm4 in cancer therapy. Clin. Cancer Res. 19, 34–41 (2013).

    Article  PubMed  CAS  Google Scholar 

  144. Sosin, A.M. et al. HDM2 antagonist MI-219 (spiro-oxindole), but not Nutlin-3 (cis-imidazoline), regulates p53 through enhanced HDM2 autoubiquitination and degradation in human malignant B-cell lymphomas. J. Hematol. Oncol. 5, 57 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Fulda, S. & Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov. 11, 109–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Vince, J.E. et al. IAP antagonists target cIAP1 to induce TNFα-dependent apoptosis. Cell 131, 682–693 (2007).

    Article  CAS  PubMed  Google Scholar 

  147. Varfolomeev, E. et al. c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor-α (TNFα)-induced NF-κB activation. J. Biol. Chem. 283, 24295–24299 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Bertrand, M.J. et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689–700 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Lill, J.R. & Wertz, I.E. Toward understanding ubiquitin-modifying enzymes: from pharmacological targeting to proteomics. Trends Pharmacol. Sci. 35, 187–207 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, Z. et al. Skp2 is a promising therapeutic target in breast cancer. Front. Oncol. 1, 57 (2012).

    Article  PubMed Central  Google Scholar 

  151. Bernassola, F., Karin, M., Ciechanover, A. & Melino, G. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 14, 10–21 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Trempe, J.F. et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science 340, 1451–1455 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Duda, D.M. et al. Structure of HHARI, a RING-IBR-RING ubiquitin ligase: autoinhibition of an Ariadne-family E3 and insights into ligation mechanism. Structure 21, 1031–1041 (2013).

    Article  CAS  Google Scholar 

  154. Frye, J.J. et al. Electron microscopy structure of human APC/C-EMI1 reveals multimodal mechanism of E3 ligase shutdown. Nat. Struct. Mol. Biol. 20, 827–835 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Fraile, J.M., Quesada, V., Rodriguez, D., Freije, J.M. & Lopez-Otin, C. Deubiquitinases in cancer: new functions and therapeutic options. Oncogene 31, 2373–2388 (2012).

    Article  CAS  PubMed  Google Scholar 

  156. Chauhan, D. et al. A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22, 345–358 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Reverdy, C. et al. Discovery of specific inhibitors of human USP7/HAUSP deubiquitinating enzyme. Chem. Biol. 19, 467–477 (2012).

    Article  CAS  PubMed  Google Scholar 

  158. Liang, Q. et al. A selective USP1–UAF1 inhibitor links deubiquitination to DNA damage responses. Nat. Chem. Biol. 10, 298–304 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Lee, B.H. et al. Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature 467, 179–184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. D'Arcy, P. et al. Inhibition of proteasome deubiquitinating activity as a new cancer therapy. Nat. Med. 17, 1636–1640 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Walczak, H., Iwai, K. & Dikic, I. Generation and physiological roles of linear ubiquitin chains. BMC Biol. 10, 23 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. López-Mosqueda, J. & Dikic, I. Deciphering functions of branched ubiquitin chains. Cell 157, 767–769 (2014).

    Article  PubMed  CAS  Google Scholar 

  163. Meyer, H.J. & Rape, M. Enhanced protein degradation by branched ubiquitin chains. Cell 157, 910–921 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rubinsztein, D.C., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709–730 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N. & Rubinsztein, D.C. α-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278, 25009–25013 (2003).

    Article  CAS  PubMed  Google Scholar 

  166. Spencer, B. et al. Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in α-synuclein models of Parkinson's and Lewy body diseases. J. Neurosci. 29, 13578–13588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Williams, A. et al. Novel targets for Huntington's disease in an mTOR-independent autophagy pathway. Nat. Chem. Biol. 4, 295–305 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Yang, Y. et al. Essential role of the linear ubiquitin chain assembly complex in lymphoma revealed by rare germline polymorphisms. Cancer Disc. 4, 480–493 (2014).

    Article  CAS  Google Scholar 

  169. Ernst, A. et al. A strategy for modulation of enzymes in the ubiquitin system. Science 339, 590–595 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to all scientists whose important contribution was not referenced in this Review due to space limitations. We would like to thank members of the Vucic and Dikic laboratories for critical comments on the manuscript. This work was supported by grants from Deutsche Forschungsgemeinschaft (DI 931/3-1; BE 4685/1-1), the Cluster of Excellence “Macromolecular Complexes” of the Goethe University Frankfurt (EXC115), LOEWE grant Ub-Net and LOEWE Centrum for Gene and Cell therapy Frankfurt and the European Research Council / ERC grant agreement n° 250241-LineUb to ID. Domagoj Vucic is an employee of Genentech.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Domagoj Vucic or Ivan Dikic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popovic, D., Vucic, D. & Dikic, I. Ubiquitination in disease pathogenesis and treatment. Nat Med 20, 1242–1253 (2014). https://doi.org/10.1038/nm.3739

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3739

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer