Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers

Abstract

Human tumors show a high level of genetic heterogeneity, but the processes that influence the timing and route of metastatic dissemination of the subclones are unknown. Here we have used whole-exome sequencing of 103 matched benign, malignant and metastatic skin tumors from genetically heterogeneous mice to demonstrate that most metastases disseminate synchronously from the primary tumor, supporting parallel rather than linear evolution as the predominant model of metastasis. Shared mutations between primary carcinomas and their matched metastases have the distinct A-to-T signature of the initiating carcinogen dimethylbenzanthracene, but non-shared mutations are primarily G-to-T, a signature associated with oxidative stress. The existence of carcinomas that either did or did not metastasize in the same host animal suggests that there are tumor-intrinsic factors that influence metastatic seeding. We also demonstrate the importance of germline polymorphisms in determining allele-specific mutations, and we identify somatic genetic alterations that are specifically related to initiation of carcinogenesis by Hras or Kras mutations. Mouse tumors that mimic the genetic heterogeneity of human cancers can aid our understanding of the clonal evolution of metastasis and provide a realistic model for the testing of novel therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chemically induced tumors carry a mutation signature of the carcinogen DMBA.
Figure 2: Phylogenetic trees reveal evolutionary relationship between tumors.
Figure 3: Histological analysis of primary tumors and metastases from mouse 1984.
Figure 4: Mutated genes in carcinogen-induced tumors.
Figure 5: Gene CNVs in mouse skin tumors.

Similar content being viewed by others

Accession codes

Primary accessions

European Nucleotide Archive

Gene Expression Omnibus

References

  1. Chang, K. et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).

    CAS  Google Scholar 

  2. Ciriello, G. et al. Emerging landscape of oncogenic signatures across human cancers. Nat. Genet. 45, 1127–1133 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Brabletz, T., Lyden, D., Steeg, P.S. & Werb, Z. Roadblocks to translational advances on metastasis research. Nat. Med. 19, 1104–1109 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Klein, C.A. Parallel progression of tumor and metastases. Nat. Rev. Cancer 9, 302–312 (2009).

    CAS  PubMed  Google Scholar 

  5. Wong, C.E. et al. Inflammation and Hras signaling control epithelial-mesenchymal transition during skin tumor progression. Genes Dev. 27, 670–682 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Quintanilla, M., Brown, K., Ramsden, M. & Balmain, A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 322, 78–80 (1986).

    CAS  PubMed  Google Scholar 

  7. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Pickering, C.R. et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin. Cancer Res. 20, 6582–6592 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Ise, K. et al. Targeted deletion of the Hras gene decreases tumor formation in mouse skin carcinogenesis. Oncogene 19, 2951–2956 (2000).

    CAS  PubMed  Google Scholar 

  10. Bos, J.L. Ras oncogenes in human cancer: a review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  11. Balmain, A. & Pragnell, I. Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene. Nature 303, 72–74 (1983).

    CAS  PubMed  Google Scholar 

  12. Finch, J.S., Albino, H.E. & Bowden, G.T. Quantitation of early clonal expansion of two mutant 61st codon c-Ha-ras alleles in DMBA/TPA-treated mouse skin by nested PCR/RFLP. Carcinogenesis 17, 2551–2557 (1996).

    CAS  PubMed  Google Scholar 

  13. Loehrke, H. et al. On the persistence of tumor initiation in two-stage carcinogenesis on mouse skin. Carcinogenesis 4, 771–775 (1983).

    CAS  PubMed  Google Scholar 

  14. Nagase, H., Mao, J. & Balmain, A. Allele-specific Hras mutations and genetic alterations at tumor susceptibility loci in skin carcinomas from interspecific hybrid mice. Cancer Res. 63, 4849–4853 (2003).

    CAS  PubMed  Google Scholar 

  15. Chen, B., You, L., Wang, Y., Stoner, D.G. & You, M. Allele-specific activation and expression of the Kras gene in hybrid mouse lung tumors induced by chemical carcinogens. Carcinogenesis 15, 2031–2035 (1994).

    CAS  PubMed  Google Scholar 

  16. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    CAS  PubMed  Google Scholar 

  17. Lawrence, M.S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Alexandrov, L.B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Campbell, P.J. et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467, 1109–1113 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J. & Schreiber, R.D. Cancer immunoediting: from immuno-surveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).

    CAS  PubMed  Google Scholar 

  21. Giancotti, F.G. Mechanisms governing metastatic dormancy and reactivation. Cell 155, 750–764 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, Z. et al. LMP1 regulates periodontal ligament progenitor cell proliferation and differentiation. Bone 47, 55–64 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sadej, R., Grudowska, A., Turczyk, L., Kordek, R. & Romanska, H.M. CD151 in cancer progression and metastasis: a complex scenario. Lab. Invest. 94, 41–51 (2014).

    CAS  PubMed  Google Scholar 

  24. Takeda, Y. et al. Diminished metastasis in tetraspanin CD151–knockout mice. Blood 118, 464–472 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Quigley, D.A. et al. Network analysis of skin tumor progression identifies a rewired genetic architecture affecting inflammation and tumor susceptibility. Genome Biol. 12, R5 (2011).

    PubMed  PubMed Central  Google Scholar 

  26. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).

    PubMed  Google Scholar 

  27. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6, pl1 (2013).

    PubMed  PubMed Central  Google Scholar 

  28. Tsai, J.H., Donaher, J.L., Murphy, D.A., Chau, S. & Yang, J. Spatiotemporal regulation of epithelial-mesenchymal transition is essential for squamous cell carcinoma metastasis. Cancer Cell 22, 725–736 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. The Cancer Genome Atlas. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  30. Aldaz, C.M., Trono, D., Larcher, F., Slaga, T. & Conti, C. Sequential trisomization of chromosomes 6 and 7 in mouse skin premalignant lesions. Mol. Carcinog. 2, 22–26 (1989).

    CAS  PubMed  Google Scholar 

  31. Namiki, T. et al. AMP kinase–related kinase NUAK2 affects tumor growth, migration and clinical outcome of human melanoma. Proc. Natl. Acad. Sci. USA 108, 6597–6602 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. The Cancer Genome Atlas. Comprehensive molecular profiling of lung adenocarcinoma. Nature 511, 543–550 (2014).

  33. Linardopoulos, S. et al. Deletion and altered regulation of p16INK4a and p15INK4b in undifferentiated mouse skin tumors. Cancer Res. 55, 5168–5172 (1995).

    CAS  PubMed  Google Scholar 

  34. Huber, K.V.M. et al. Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 508, 222–227 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gad, H. et al. MTH1 inhibition eradicates cancer by preventing sanitation of the dNTP pool. Nature 508, 215–221 (2014).

    CAS  PubMed  Google Scholar 

  36. Westcott, P.M.K. et al. The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489–492 (2015).

    CAS  PubMed  Google Scholar 

  37. McFadden, D.G. et al. Genetic and clonal dissection of murine small cell lung carcinoma progression by genome sequencing. Cell 156, 1298–1311 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Klein, C.A. Selection and adaptation during metastatic cancer progression. Nature 501, 365–372 (2013).

    CAS  PubMed  Google Scholar 

  39. Peinado, H., Lavotshkin, S. & Lyden, D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin. Cancer Biol. 21, 139–146 (2011).

    CAS  PubMed  Google Scholar 

  40. Cox, T.R. et al. The hypoxic cancer secretome induces pre-metastatic bone lesions through lysyl oxidase. Nature 522, 106–110 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mittal, D., Gubin, M.M., Schreiber, R.D. & Smyth, M.J. New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr. Opin. Immunol. 27, 16–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nassar, D., Latil, M., Boeckx, B., Lambrechts, D. & Blanpain, C. Genomic landscape of carcinogen-induced and genetically induced mouse skin squamous cell carcinoma. Nat. Med. 21, 946–954 (2015).

    CAS  PubMed  Google Scholar 

  43. Engel, J., Emeny, R.T. & Hölzel, D. Positive lymph nodes do not metastasize. Cancer Metastasis Rev. 31, 235–246 (2012).

    PubMed  Google Scholar 

  44. Fisher, B. et al. Twenty-five–year follow-up of a randomized trial comparing radical mastectomy, total mastectomy and total mastectomy followed by irradiation. N. Engl. J. Med. 347, 567–575 (2002).

    PubMed  Google Scholar 

  45. Veronesi, U., Marubini, E., Mariani, L., Valagussa, P. & Zucali, R. The dissection of internal mammary nodes does not improve the survival of breast cancer patients. 30-year results of a randomised trial. Eur. J. Cancer 35, 1320–1325 (1999).

    CAS  PubMed  Google Scholar 

  46. Varela, I. et al. Exome sequencing identifies frequent mutaiton of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469, 539–542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. DePristo, M.A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    PubMed  PubMed Central  Google Scholar 

  51. Forbes, S.A. et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 43, D805–D811 (2015).

    CAS  PubMed  Google Scholar 

  52. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Talevich, E., Shain, A.H. & Bastian, B.C. CNVkit: Copy number detection and viziualization for targeted sequencing using off-target reads. BioRxiv 010876 (2014).

  54. Untergasser, A. et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 40, e115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Koressaar, T. & Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 23, 1289–1291 (2007).

    CAS  PubMed  Google Scholar 

  56. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17, 10 (2011).

    Google Scholar 

  57. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed  PubMed Central  Google Scholar 

  58. Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11, 396–398 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Carvalho, B.S. & Irizarry, R.A. A framework for oligonucleotide microarray preprocessing. Bioinformatics 26, 2363–2367 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Quigley, D. Equalizer reduces SNP bias in Affymetrix microarrays. BMC Bioinformatics 16, 238 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Cancer Institute (NCI) grants UO1 CA84244 (A.B.), UO1 CA141455 (A.B.), UO1 CA176287 (A.B.) and RO1CA184510 (A.B.), and the Barbara Bass Bakar Distinguished Professorship in Cancer Genetics. K.D.H. was supported by the US National Institutes of Health training grant T32 GM007175 and is currently supported by an NCI F31 National Research Service Award (NRSA). D.J.A. is supported by Cancer Research UK and the Wellcome Trust. We thank our colleagues for their help and comments in refining this study and manuscript. We would also like to thank R. Kettleborough and R. White (both at the Wellcome Trust Sanger Institute) for assistance with MiSeq analysis and E. Wu, K. Copren and the UCSF Helen Diller Family Comprehensive Cancer Cancer Center Genome Analysis Core for assistance with Affymetrix microarrays and with sequencing.

Author information

Authors and Affiliations

Authors

Contributions

M.Q.M., D.J.A. and A.B. contributed to the overall study design; M.Q.M. carried out the experiments and computational analysis, with input from K.D.H.; R.D. and D.C. carried out the animal studies; G.H., D.C. and P.V. organized the tissue bank; and K.-Y.J. did histological assessments of all of the tumors. Sequencing and MiSeq validation were carried out at the Sanger Institute under the supervision of D.J.A., with assistance from J.H. M.Q.M. and A.B. wrote the manuscript, with contributions from the other authors.

Corresponding author

Correspondence to Allan Balmain.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-4 and Supplementary Tables 1–3 and 5 (PDF 427 kb)

Supplementary Table 4

Nonsynonymous mutations in carcinogen-induced tumors (XLSX 336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCreery, M., Halliwill, K., Chin, D. et al. Evolution of metastasis revealed by mutational landscapes of chemically induced skin cancers. Nat Med 21, 1514–1520 (2015). https://doi.org/10.1038/nm.3979

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3979

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer