Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease

Abstract

Neutrophil extracellular traps (NETs) are implicated in autoimmunity, but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes (RNP ICs), inducers of NETosis, require mitochondrial reactive oxygen species (ROS) for maximal NET stimulation. After RNP IC stimulation of neutrophils, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro, and when this DNA is injected into mice, it stimulates type I interferon (IFN) signaling through a pathway dependent on the DNA sensor STING. Mitochondrial ROS are also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus. This was also observed in individuals with chronic granulomatous disease, who lack NADPH oxidase activity but still develop autoimmunity and type I IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type I IFN responses in a mouse model of lupus. Together, these findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial ROS support RNP IC–mediated NETosis.
Figure 2: RNP ICs induce mitochondria mobilization and release of oxidized DNA.
Figure 3: Oxidized DNA enhances the inflammatory response in a STING-dependent manner.
Figure 4: SLE LDGs release oxidized mtDNA in a mitochondrial superoxide-dependent manner.
Figure 5: LDGs from individuals with CGD release NETs in a mitochondrial superoxide-dependent manner.
Figure 6: In vivo administration of a mito-ROS scavenger attenuates lupus-like disease in mice.

Similar content being viewed by others

References

  1. Nathan, C. Neutrophils and immunity: challenges and opportunities. Nat. Rev. Immunol. 6, 173–182 (2006).

    CAS  PubMed  Google Scholar 

  2. Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).

    CAS  PubMed  Google Scholar 

  3. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  4. Garcia-Romo, G.S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).

    PubMed  PubMed Central  Google Scholar 

  5. Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kahlenberg, J.M., Carmona-Rivera, C., Smith, C.K. & Kaplan, M.J. Neutrophil extracellular trap–associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190, 1217–1226 (2013).

    CAS  PubMed  Google Scholar 

  7. Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide complexes in systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra19 (2011).

    PubMed  PubMed Central  Google Scholar 

  8. Denny, M.F. et al. A distinct subset of proinflammatory neutrophils isolated from patients with systemic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J. Immunol. 184, 3284–3297 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaplan, M.J. Neutrophils in the pathogenesis and manifestations of SLE. Nat. Rev. Rheumatol. 7, 691–699 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40 (2013).

    PubMed  PubMed Central  Google Scholar 

  11. Knight, J.S. et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J. Clin. Invest. 123, 2981–2993 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Knight, J.S. et al. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis. Circ. Res. 114, 947–956 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith, C.K. et al. Neutrophil extracellular trap–derived enzymes oxidize high-density lipoprotein: an additional proatherogenic mechanism in systemic lupus erythematosus. Arthritis Rheumatol. 66, 2532–2544 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Knight, J.S., Carmona-Rivera, C. & Kaplan, M.J. Proteins derived from neutrophil extracellular traps may serve as self-antigens and mediate organ damage in autoimmune diseases. Front. Immunol. 3, 380 (2012).

    PubMed  PubMed Central  Google Scholar 

  15. Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps: is immunity the second function of chromatin? J. Cell Biol. 198, 773–783 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Barrientos, L. et al. An improved strategy to recover large fragments of functional human neutrophil extracellular traps. Front. Immunol. 4, 166 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Wang, Y. et al. Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J. Cell Biol. 184, 205–213 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Holland, P.C. & Sherratt, H.S. Biochemical effects of the hypoglycemic compound diphenyleneiodonnium. Catalysis of anion–hydroxyl ion exchange across the inner membrane of rat liver mitochondria and effects on oxygen uptake. Biochem. J. 129, 39–54 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. White, M.J. et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell 159, 1549–1562 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Oka, T. et al. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485, 251–255 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Altenhöfer, S., Radermacher, K.A., Kleikers, P.W., Wingler, K. & Schmidt, H.H. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid. Redox Signal. 23, 406–427 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Doughan, A.K., Harrison, D.G. & Dikalov, S.I. Molecular mechanisms of angiotensin II–mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular endothelial dysfunction. Circ. Res. 102, 488–496 (2008).

    CAS  PubMed  Google Scholar 

  24. Dikalov, S. Cross-talk between mitochondria and NADPH oxidases. Free Radic. Biol. Med. 51, 1289–1301 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Mehta, P.K. & Griendling, K.K. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am. J. Physiol. Cell Physiol. 292, C82–C97 (2007).

    CAS  PubMed  Google Scholar 

  26. Nakajima, A., Kurihara, H., Yagita, H., Okumura, K. & Nakano, H. Mitochondrial extrusion through the cytoplasmic vacuoles during cell death. J. Biol. Chem. 283, 24128–24135 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gehrke, N. et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING-dependent immune sensing. Immunity 39, 482–495 (2013).

    CAS  PubMed  Google Scholar 

  28. Pazmandi, K. et al. Oxidative modification enhances the immunostimulatory effects of extracellular mitochondrial DNA on plasmacytoid dendritic cells. Free Radic. Biol. Med. 77, 281–290 (2014).

    CAS  PubMed  Google Scholar 

  29. Ries, M. et al. Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J. Leukoc. Biol. 94, 123–135 (2013).

    CAS  PubMed  Google Scholar 

  30. Li, X. et al. Cyclic GMP–AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39, 1019–1031 (2013).

    CAS  PubMed  Google Scholar 

  31. Remijsen, Q. et al. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 21, 290–304 (2011).

    CAS  PubMed  Google Scholar 

  32. Kelkka, T. et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxid. Redox Signal. 21, 2231–2245 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gergely, P. Jr. et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum. 46, 175–190 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Campbell, A.M., Kashgarian, M. & Shlomchik, M.J. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl. Med. 4, 157ra141 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Bianchi, M. et al. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood 114, 2619–2622 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Hultqvist, M., Olsson, L.M., Gelderman, K.A. & Holmdahl, R. The protective role of ROS in autoimmune disease. Trends Immunol. 30, 201–208 (2009).

    CAS  PubMed  Google Scholar 

  37. Yu, E.P. & Bennett, M.R. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol. Metab. 25, 481–487 (2014).

    CAS  PubMed  Google Scholar 

  38. Go, Y.M. et al. A key role for mitochondria in endothelial signaling by plasma cysteine/cystine redox potential. Free Radic. Biol. Med. 48, 275–283 (2010).

    CAS  PubMed  Google Scholar 

  39. Bratic, A. & Larsson, N.G. The role of mitochondria in aging. J. Clin. Invest. 123, 951–957 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Jacob, C.O. et al. Lupus-associated causal mutation in neutrophil cytosolic factor 2 (NCF2) brings unique insights to the structure and function of NADPH oxidase. Proc. Natl. Acad. Sci. USA 109, E59–E67 (2012).

    CAS  PubMed  Google Scholar 

  41. Vyshkina, T. et al. Association of common mitochondrial DNA variants with multiple sclerosis and systemic lupus erythematosus. Clin. Immunol. 129, 31–35 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fuchs, T.A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231–241 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fazzi, F. et al. TNFR1/phox interaction and TNFR1 mitochondrial translocation thwart silica-induced pulmonary fibrosis. J. Immunol. 192, 3837–3846 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. West, A.P. et al. TLR signaling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sibley, C.T. et al. Assessment of atherosclerosis in chronic granulomatous disease. Circulation 130, 2031–2039 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lekstrom-Himes, J.A., Kuhns, D.B., Alvord, W.G. & Gallin, J.I. Inhibition of human neutrophil IL-8 production by hydrogen peroxide and dysregulation in chronic granulomatous disease. J. Immunol. 174, 411–417 (2005).

    CAS  PubMed  Google Scholar 

  47. Kraaij, M.D. et al. Induction of regulatory T cells by macrophages is dependent on production of reactive oxygen species. Proc. Natl. Acad. Sci. USA 107, 17686–17691 (2010).

    CAS  PubMed  Google Scholar 

  48. Lee, K., Won, H.Y., Bae, M.A., Hong, J.H. & Hwang, E.S. Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and TH/Treg cells. Proc. Natl. Acad. Sci. USA 108, 9548–9553 (2011).

    CAS  PubMed  Google Scholar 

  49. Fernandez-Boyanapalli, R. et al. Impaired phagocytosis of apoptotic cells by macrophages in chronic granulomatous disease is reversed by IFN-γ in a nitric oxide–dependent manner. J. Immunol. 185, 4030–4041 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Meissner, F. et al. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116, 1570–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schauer, C. et al. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat. Med. 20, 511–517 (2014).

    CAS  PubMed  Google Scholar 

  52. Gane, E.J. et al. The mitochondria-targeted antioxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int. 30, 1019–1026 (2010).

    CAS  PubMed  Google Scholar 

  53. Buyse, G.M. et al. Idebenone as a novel, therapeutic approach for Duchenne muscular dystrophy: results from a 12-month, double-blind, randomized placebo-controlled trial. Neuromuscul. Disord. 21, 396–405 (2011).

    PubMed  Google Scholar 

  54. Tan, E.M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).

    CAS  PubMed  Google Scholar 

  55. Kuhns, D.B. et al. Residual NADPH oxidase and survival in chronic granulomatous disease. N. Engl. J. Med. 363, 2600–2610 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Olferiev, M., Lliguicota, M., Kirou, K.A. & Crow, M.K. Methods Mol. Biol. 1134, 131–150 (2014).

    CAS  PubMed  Google Scholar 

  57. Ahmad, S., Ghosh, A., Nair, D.L. & Seshadri, M. Simultaneous extraction of nuclear and mitochondrial DNA from human blood. Genes Genet. Syst. 82, 429–432 (2007).

    CAS  PubMed  Google Scholar 

  58. Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type-I interferon–dependent innate immunity. Nature 461, 788–792 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Boxio, R., Bossenmeyer-Pourié, C., Steinckwich, N., Dournon, C. & Nüsse, O. Mouse bone marrow contains large numbers of functionally competent neutrophils. J. Leukoc. Biol. 75, 604–611 (2004).

    CAS  PubMed  Google Scholar 

  60. Carmona-Rivera, C., Simeonov, D.R., Cardillo, N.D., Gahl, W.A. & Cadilla, C.L. A divalent interaction between HPS1 and HPS4 is required for the formation of the biogenesis of lysosome-related organelle complex–3 (BLOC-3). Biochim. Biophys. Acta 1833, 468–478 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Sun, L. Tanaka (both at University of Washington), and E. Moore (National Institute of Arthritis and Musculoskeletal and Skin Diseases; NIAMS) for technical assistance; W. Wang (University of Washington) for providing mouse mitochondria isolated from hearts; D. Kuhns (NIAID) for scientific input, and R. Siegel (NIAMS) for critical review of the manuscript. We also thank H.-W. Sun, M. Ward (both at NIAMS) and C. Spiekerman (University of Washington) for expert statistical advice. We also thank M. Gale for providing Tmem173-knockout mice. The study was supported by grants from the Washington Research Foundation, Leap for Lupus (K.B.E.), the Wenner-Gren Foundation, the foundation BLANCEFLOR Boncompagni-Ludovisi née Bildt (C.L.), and the Intramural Research Program at NIAMS/NIH (L.P.B., M.P., C.K.S., C.C.-R. and M.J.K.). The funding bodies had no part in the study design; the collection, analysis and interpretation of the data; the writing of the manuscript or the submission.

Author information

Authors and Affiliations

Authors

Contributions

All contributing authors have agreed to the submission of this manuscript for publication. K.B.E. and M.J.K. conceived the study, and analyzed and interpreted results. C.L., L.P.B., M.M.P., C.C.-R. and C.K.S. designed and performed experiments, analyzed data and interpreted results. S.S.D.R. and H.L.M. provided study materials and characterized the CGD cohort. J.A.L. participated in the design and interpretation of the in vitro data, as well as the critical review of the paper. C.L., L.P.B., K.B.E. and M.J.K. wrote the manuscript.

Corresponding authors

Correspondence to Keith B Elkon or Mariana J Kaplan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and figures

Supplementary Figures 1–7 and Supplementary Table 1 (PDF 1860 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lood, C., Blanco, L., Purmalek, M. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 22, 146–153 (2016). https://doi.org/10.1038/nm.4027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing