Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells

Abstract

Dendritic-cell (DC) trafficking and function in tumors is poorly characterized, with studies confined to myeloid DCs (DC1s). Tumors inhibit DC1 migration and function, likely hindering specific immunity. The role of plasmacytoid DCs (DC2s) in tumor immunity is unknown. We show here that malignant human ovarian epithelial tumor cells express very high levels of stromal-derived factor-1, which induces DC2 precursor (preDC2) chemotaxis and adhesion/transmigration, upregulates preDC2 very late antigen (VLA)-5, and protects preDC2s from tumor macrophage interleukin-10–induced apoptosis, all through CXC chemokine receptor-4. The VLA-5 ligand vascular-cell adhesion molecule-1 mediated preDC2 adhesion/transmigration. Tumor preDC2s induced significant T-cell interleukin-10 unrelated to preDC2 differentiation or activation state, and this contributed to poor T-cell activation. Myeloid precursor DCs (preDC1s) were not detected. Tumors may weaken immunity by attracting preDC2s and protecting them from the harsh microenvironment, and by altering preDC1 distribution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Freshly isolated DCs in malignant ascites of patients with ovarian carcinoma display flow cytometric, morphologic and functional characteristics of preDC2s.
Figure 2: Ovarian epithelial carcinoma cells express functional SDF-1.
Figure 3: Tumor and blood preDC2s activate T cells in distinct manners when freshly isolated and following differentiation with IL-3.
Figure 4: Tumor preDC2s induce significant T-cell IL-10 induction independent of differentiation or activation status.

Similar content being viewed by others

References

  1. Cella, M. et al. Plasmacytoid monocytes migrate to inflamed lymph nodes and produce large amounts of type I interferon. Nature Med. 5, 919–923 (1999).

    Article  CAS  Google Scholar 

  2. Rissoan, M.C. et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283, 1183–1186 (1999).

    Article  CAS  Google Scholar 

  3. Nestle, F.O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med 4, 328–332 (1998).

    Article  CAS  Google Scholar 

  4. Holtl, L. et al. CD83+ blood dendritic cells as a vaccine for immunotherapy of metastatic renal-cell cancer. Lancet 352, 1358 (1998).

    Article  CAS  Google Scholar 

  5. Hsu, F.J. et al. Vaccination of patients with B-cell lymphoma using autologous antigen- pulsed dendritic cells. Nature Med 2, 52–58 (1996).

    Article  CAS  Google Scholar 

  6. Gabrilovich, D.I., Corak, J., Ciernik, I.F., Kavanaugh, D. & Carbone, D.P. Decreased antigen presentation by dendritic cells in patients with breast cancer. Clin. Cancer Res. 3, 483–490 (1997).

    CAS  Google Scholar 

  7. Gabrilovich, D. et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92, 4150–4166 (1998).

    CAS  Google Scholar 

  8. Menetrier-Caux, C. et al. Inhibition of the differentiation of dendritic cells from CD34+ progenitors by tumor cells: role of interleukin-6 and macrophage colony-stimulating factor. Blood 92, 4778–4791 (1998).

    CAS  Google Scholar 

  9. Chomarat, P., Banchereau, J., Davoust, J. & Palucka, A. K. IL-6 switches the differentiation of monocytes from dendritic cells to macrophages. Nature Immunol. 1, 510–514 (2000).

    Article  CAS  Google Scholar 

  10. Bell, D. et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J. Exp. Med. 190, 1417–1426 (1999).

    Article  CAS  Google Scholar 

  11. Grouard, G. et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin (IL)-3 and CD40-ligand. J. Exp. Med. 185, 1101–1111 (1997).

    Article  CAS  Google Scholar 

  12. Kohrgruber, N. et al. Survival, maturation, and function of CD11c- and CD11c+ peripheral blood dendritic cells are differentially regulated by cytokines. J. Immunol. 163, 3250–3259 (1999).

    CAS  PubMed  Google Scholar 

  13. Cella, M., Facchetti, F., Lanzavecchia, A. & Colonna, M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent Th1 polarization. Nature Immunol. 1, 305–310 (2000).

    Article  CAS  Google Scholar 

  14. Kadowaki, N., Antonenko, S., Lau, J. Y.-N. & Liu, Y.-J. Natural interferon α/β-producing cells link innate and adaptive immunity. J. Exp. Med. 192, 219–225 (2000).

    Article  CAS  Google Scholar 

  15. Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    Article  CAS  Google Scholar 

  16. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  Google Scholar 

  17. Rubbert, A. et al. Dendritic cells express multiple chemokine receptors used as coreceptors for HIV entry. J. Immunol. 160, 3933–3941 (1998).

    CAS  PubMed  Google Scholar 

  18. Kellermann, S.A., Hudak, S., Oldham, E.R., Liu, Y.J. & McEvoy, L.M. The CC chemokine receptor-7 ligands 6Ckine and macrophage inflammatory protein-3 β are potent chemoattractants for in vitro- and in vivo-derived dendritic cells. J. Immunol. 162, 3859–3864 (1999).

    CAS  PubMed  Google Scholar 

  19. Foti, M. et al. Upon dendritic cell (DC) activation chemokines and chemokine receptor expression are rapidly regulated for recruitment and maintenance of DC at the inflammatory site. Int. Immunol. 11, 979–986 (1999).

    Article  CAS  Google Scholar 

  20. Dieu, M.C. et al. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J. Exp. Med. 188, 373–386 (1998).

    Article  CAS  Google Scholar 

  21. Jahnsen, F.L. et al. Experimentally induced recruitment of plasmacytoid (CD123high) dendritic cells in human nasal allergy. J. Immunol. 165, 4062–4068 (2000).

    Article  CAS  Google Scholar 

  22. Roers, A., Hochkeppel, H.K., Horisberger, M.A., Hovanessian, A. & Haller, O. MxA gene expression after live virus vaccination: a sensitive marker for endogenous type I interferon. J. Infect. Dis. 169, 807–813 (1994).

    Article  CAS  Google Scholar 

  23. Ito, T. et al. A CD1a+/CD11c+ subset of human blood dendritic cells is a direct precursor of Langerhans cells. J. Immunol. 163, 1409–1419 (1999).

    CAS  PubMed  Google Scholar 

  24. Pulendran, B. et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J. Immunol. 165, 566–572 (2000).

    Article  CAS  Google Scholar 

  25. Zou, W. et al. Quantification of cytokine gene expression by competitive PCR using a colorimetric assay. Eur. Cytokine Netw. 6, 257–264 (1995).

    CAS  PubMed  Google Scholar 

  26. Coulomb-L'Hermin, A. et al. Stromal cell-derived factor 1 (SDF-1) and antenatal human B cell lymphopoiesis: expression of SDF-1 by mesothelial cells and biliary ductal plate epithelial cells. Proc. Natl. Acad. Sci. USA 96, 8585–90 (1999).

    Article  CAS  Google Scholar 

  27. Rollins, B. J. Chemokines. Blood 90, 909–28 (1997).

    CAS  Google Scholar 

  28. Tilton, B. et al. Signal transduction by CXC chemokine receptor 4. Stromal cell-derived factor 1 stimulates prolonged protein kinase b and extracellular signal-regulated kinase 2 activation in T lymphocytes. J. Exp. Med. 192, 313–324 (2000).

    Article  CAS  Google Scholar 

  29. Tillman, B.W. et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector. J. Immunol. 162, 6378–6383 (1999).

    CAS  PubMed  Google Scholar 

  30. Mayordomo, J.I. et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Med. 1, 1297–1302 (1995).

    Article  CAS  Google Scholar 

  31. Rabinowich, H. et al. Expression of cytokine genes or proteins and signaling molecules in lymphocytes associated with human ovarian carcinoma. Int. J. Cancer 68, 276–284 (1996).

    Article  CAS  Google Scholar 

  32. Beatty, P., Hanisch, F.G., Stolz, D.B., Finn, O.J. & Ciborowski, P. Biochemical characterization of the soluble form of tumor antigen MUC1 isolated from sera and ascites fluid of breast and pancreatic cancer patients. Clin. Cancer Res. 7, 781s–787s (2001).

  33. Olweus, J. et al. Dendritic cell ontogeny: a human dendritic cell lineage of myeloid origin. Proc. Natl. Acad. Sci. USA 94, 12551–1256 (1997).

    Article  CAS  Google Scholar 

  34. Sallusto, F. et al. Distinct patterns and kinetics of chemokine production regulate dendritic cell function. Eur J. Immunol. 29, 1617–1625 (1999).

    Article  CAS  Google Scholar 

  35. Geijtenbeek, B.H.T. DC-SIGN-ICAM-2 interaction mediates dendritic cell trafficking. Nature Immunol. 1, 353–357 (2000).

    Article  CAS  Google Scholar 

  36. Campbell, J. J. et al. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381–4 (1998).

    Article  CAS  Google Scholar 

  37. Peled, A. et al. The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95, 3289–3296 (2000).

    CAS  Google Scholar 

  38. Enk, A. H., Jonuleit, H., Saloga, J. & Knop, J. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int. J. Cancer 73, 309–316 (1997).

    Article  CAS  Google Scholar 

  39. Kiertscher, S.M., Luo, J., Dubinett, S.M. & Roth, M.D. Tumors promote altered maturation and early apoptosis of monocyte-derived dendritic cells. J. Immunol. 164, 1269–1276 (2000).

    Article  CAS  Google Scholar 

  40. Marrack, P., Kappler, J. & Mitchell, T. Type I interferons keep activated T cells alive. J. Exp. Med. 189, 521–530 (1999).

    Article  CAS  Google Scholar 

  41. Zou, W. et al. Reciprical regulation of plasmacytoid dendritic cells and monocytes during viral infection. Eur.J. Immunol. (in the press).

  42. Groux, H., Bigler, M., de Vries, J.E. & Roncarolo, M.G. Inhibitory and stimulatory effects of IL-10 on human CD8+ T cells. J. Immunol. 160, 3188–3193 (1998).

    CAS  Google Scholar 

  43. Nanki, T. & Lipsky, P.E. Cutting edge: stromal cell-derived factor-1 is a costimulator for CD4+ T cell activation. J. Immunol. 164, 5010–5014 (2000).

    Article  CAS  Google Scholar 

  44. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  Google Scholar 

  45. Zou, W. et al. Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by β-chemokines rather than IL-12. J. Immunol. 165, 4388–4396 (2000).

    Article  CAS  Google Scholar 

  46. Berard, F. et al. Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J. Exp. Med. 192, 1535–1544 (2000).

    Article  CAS  Google Scholar 

  47. Zou, W. et al. A Guide to isolation, culture and propagation of dendritic cells. in Dendritic Cells: Biology and Clinical Applications, 2nd edn. (ed. Lotze, M.) 77 (Academic Press, London, 2001).

    Google Scholar 

Download references

Acknowledgements

We thank O. Haller for antibody against MxA; A. Amara and F. Arenzana-Seisdedos for monoclonal antibody K15C against SDF-1; and S. Clayton, E. Kraus, S. Coquery, C. Chalouni and D. Olivares for technical assistance. T.J.C. was supported by grants from the NIH, the Baylor endowment and Golfers against Cancer. D.E., V.M. and P.G. were supported by the Association de Recherche sur le Cancer (ARC), France.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiping Zou or Tyler J. Curiel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, W., Machelon, V., Coulomb-L'Hermin, A. et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 7, 1339–1346 (2001). https://doi.org/10.1038/nm1201-1339

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1201-1339

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing