Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis

Abstract

Chronic progression of two T cell–mediated central nervous system (CNS) demyelinating models of multiple sclerosis, relapsing EAE (R-EAE) and Theiler's murine encephalomyelitis virus–induced demyelinating disease (TMEV-IDD) is dependent on the activation of T cells to endogenous myelin epitopes (epitope spreading). Using transfer of carboxyfluorescein succinyl ester (CFSE)-labeled T-cell receptor (TCR)-transgenic T cells and mixed bone marrow chimeras, we show that activation of naive proteolipid protein (PLP)139–151-specific T cells in SJL mice undergoing PLP178–191-induced R-EAE or TMEV-IDD occurs directly in the CNS and not in the cervical lymph nodes or other peripheral lymphoid organs. Examination of the antigen-presentation capacity of antigen-presenting cell (APC) populations purified from the CNS of mice with PLP178–191-induced R-EAE shows that only F4/80CD11c+CD45hi dendritic cells (DCs) efficiently present endogenous antigen to activate naive PLP139–151-specific T cells in vitro. In contrast, DCs as well as F4/80+CD45hi macrophages and F4/80+CD45lo microglia activate a PLP139–151-specific helper T cell line. The data suggest that naive T cells enter the inflamed CNS and are activated by local APCs, possibly DCs, to initiate epitope spreading.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Naive CFSE-labeled PLP139–151-specific transgenic cells proliferate in the CNS, but not in the peripheral lymph organs, of PLP178–191-primed mice.
Figure 2: PLP139–151-specific transgenic cells show an activated phenotype only in the CNS of PLP178–191-primed bone marrow chimeras.
Figure 3: PLP139–151-specific T cells are activated in the CNS, but not the periphery, of TMEV-infected mice.
Figure 4: Differential ability of CNS microglia, macrophages and DCs to present endogenous and exogenous peptide to naive and activated CD4+ T cells.

Similar content being viewed by others

References

  1. Vanderlugt, C.L. & Miller, S.D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2, 85–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Tuohy, V.K., Yu, M., Yin, L., Kawczak, J.A. & Kinkel, R.P. Spontaneous regression of primary autoreactivity during chronic progression of experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med. 189, 1033–1042 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lehmann, P.V., Forsthuber, T., Miller, A. & Sercarz, E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. McRae, B.L., Vanderlugt, C.L., Dal Canto, M.C. & Miller, S.D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 182, 75–85 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Vanderlugt, C.L. et al. Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J. Immunol. 164, 670–678 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Yu, M., Johnson, J.M. & Tuohy, V.K. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: A basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183, 1777–1788 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Miller, S.D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nat. Med. 3, 1133–1136 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Katz-Levy, Y. et al. Temporal development of autoreactive Th1 responses and endogenous antigen presentation of self myelin epitopes by CNS-resident APCs in Theiler's virus-infected mice. J. Immunol. 165, 5304–5314 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Neville, K.L., Padilla, J. & Miller, S.D. Myelin-specific tolerance attenuates the progression of a virus-induced demyelinating disease: implications for the treatment of MS. J. Neuroimmunol. 123, 18–29 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Yamada, S., DePasquale, M., Patlak, C.S. & Cserr, H.F. Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am. J. Physiol. 261, H1197–H1204 (1991).

    CAS  PubMed  Google Scholar 

  11. Hochwald, G.M., Van, D.A., Robinson, M.E. & Thorbecke, G.J. Immune response in draining lymph nodes and spleen after intraventricular injection of antigen. Int. J. Neurosci. 39, 299–306 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Ling, C., Sandor, M. & Fabry, Z. In situ processing and distribution of intracerebrally injected OVA in the CNS. J. Neuroimmunol. 141, 90–98 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Karman, J., Ling, C., Sandor, M. & Fabry, Z. Initiation of immune responses in brain is promoted by local dendritic cells. J. Immunol. 173, 2353–2361 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. de Vos, A.F. et al. Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J. Immunol. 169, 5415–5423 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hickey, W.F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988).

    Article  CAS  PubMed  Google Scholar 

  16. Mack, C.L., Neville, K.L. & Miller, S.D. Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler's virus model of multiple sclerosis. J. Neuroimmunol. 144, 68–79 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Serafini, B., Columba-Cabezas, S., Di, R.F. & Aloisi, F. Intracerebral recruitment and maturation of dendritic cells in the onset and progression of experimental autoimmune encephalomyelitis. Am. J. Pathol. 157, 1991–2002 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fischer, H.G. & Reichmann, G. Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J. Immunol. 166, 2717–2726 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity 1, 327–339 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Oehmichen, M., Gruninger, H., Wietholter, H. & Gencic, M. Lymphatic efflux of intracerebrally injected cells. Acta Neuropathol. (Berl) 45, 61–65 (1979).

    Article  CAS  Google Scholar 

  21. Ngo, V.N. et al. Lymphotoxin alpha/beta and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403–412 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Muldoon, L.L. et al. Trafficking of superparamagnetic iron oxide particles (Combidex) from brain to lymph nodes in the rat. Neuropathol. Appl. Neurobiol. 30, 70–79 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Suter, T. et al. Dendritic cells and differential usage of the MHC class II transactivator promoters in the central nervous system in experimental autoimmune encephalitis. Eur. J. Immunol. 30, 794–802 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Pashenkov, M. et al. Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124, 480–492 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Plumb, J., Armstrong, M.A., Duddy, M., Mirakhur, M. & McQuaid, S. CD83-positive dendritic cells are present in occasional perivascular cuffs in multiple sclerosis lesions. Mult. Scler. 9, 142–147 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kivisakk, P. et al. Expression of CCR7 in multiple sclerosis: implications for CNS immunity. Ann. Neurol. 55, 627–638 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Krakowski, M.L. & Owens, T. Naive T lymphocytes traffic to inflamed central nervous system, but require antigen recognition for activation. Eur. J. Immunol. 30, 1002–1009 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Greter, M. et al. Dendritic cells permit immune invasion of the CNS during experimental autoimmune encephalomyelitis. Nat. Med. 11, 328–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Waldner, H., Whitters, M.J., Sobel, R.A., Collins, M. & Kuchroo, V.K. Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc. Natl. Acad. Sci. USA 97, 3412–3417 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tompkins, S.M. et al. De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J. Immunol. 168, 4173–4183 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Marvin at the University of Chicago for FACS-sorting expertise and A. Kohm for critical reading of the manuscript. The authors acknowledge the contribution of discussion with colleagues at the Myelin Repair Foundation. Supported in part by grants from the US National Institutes of Health (NS-30871 and NS-23349) and the Myelin Repair Foundation. E.J.M. was supported by National Institutes of Health Training Grant AI-07476 and S.L.B. by National Multiple Sclerosis Society Postdoctoral Fellowship Grant FG 1563 A-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

PLP139–151 reactivity in PLP178–191-primed mice. (PDF 113 kb)

Supplementary Fig. 2

FACS purification of CNS antigen presenting cell populations. (PDF 124 kb)

Supplementary Fig. 3

CD11c+ DCs are found in the same areas as CD4+ T cells in the CNS of mice with both R-EAE and TMEV-IDD. (PDF 161 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, E., Bailey, S., Castenada, C. et al. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11, 335–339 (2005). https://doi.org/10.1038/nm1202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing