Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun

Abstract

Neural stem and progenitor cells (NSCs/NPCs) give rise to neurons, astrocytes and oligodendrocytes. However, the mechanisms underlying the decision of a stem cell to either self-renew or differentiate are incompletely understood. We demonstrate here that Fbw7 (F-box and WD repeat domain containing-7), the substrate recognition component of an SCF (complex of SKP1, CUL1 and F-box protein)-type E3 ubiquitin ligase, is a key regulator of NSC/NPC viability and differentiation. The absence of Fbw7 in the mouse brain caused severely impaired stem cell differentiation and increased progenitor cell death. Fbw7 deficiency resulted in accumulation of two SCF(Fbw7) substrates, the transcription factors active Notch1 and N-terminally phosphorylated c-Jun. Genetic and pharmacological rescue experiments identified c-Jun as a key substrate of Fbw7 in controlling progenitor cell viability, whereas inhibition of Notch signaling alleviated the block in stem cell differentiation. Thus Fbw7 controls neurogenesis by antagonizing Notch and c-Jun N-terminal kinase (JNK)/c-Jun signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fbw7 controls cell number and survival in the brain.
Figure 2: Fbw7 controls stem cell differentiation and neurogenesis in the brain.
Figure 3: Absence of Fbw7 leads to retention of markers for immature cells and induces apoptosis in vitro.
Figure 4: Absence of Fbw7 blocks differentiation in vitro.
Figure 5: Negative regulation of c-Jun by Fbw7 controls neural cell viability.
Figure 6: Fbw7 controls stem cell differentiation by antagonizing Notch.

Similar content being viewed by others

References

  1. Merkle, F.T. & Alvarez-Buylla, A. Neural stem cells in mammalian development. Curr. Opin. Cell Biol. 18, 704–709 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Götz, M. & Barde, Y.A. Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons. Neuron 46, 369–372 (2005).

    Article  PubMed  Google Scholar 

  3. Ho, M.S., Tsai, P.I. & Chien, C.T. F-box proteins: the key to protein degradation. J. Biomed. Sci. 13, 181–191 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Welcker, M. & Clurman, B.E. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 8, 83–93 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Tan, Y., Sangfelt, O. & Spruck, C. The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett. 271, 1–12 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Fuchs, S.Y. Tumor suppressor activities of the Fbw7 E3 ubiquitin ligase receptor. Cancer Biol. Ther. 4, 506–508 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Behrens, A., Sibilia, M. & Wagner, E.F. Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat. Genet. 21, 326–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Besirli, C.G., Wagner, E.F. & Johnson, E.M. Jr. The limited role of NH2-terminal c-Jun phosphorylation in neuronal apoptosis: identification of the nuclear pore complex as a potential target of the JNK pathway. J. Cell Biol. 170, 401–411 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Raivich, G. et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43, 57–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Yoon, K.J. et al. Mind bomb 1-expressing intermediate progenitors generate notch signaling to maintain radial glial cells. Neuron 58, 519–531 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Mizutani, K., Yoon, K., Dang, L., Tokunaga, A. & Gaiano, N. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors. Nature 449, 351–355 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Corbin, J.G. et al. Regulation of neural progenitor cell development in the nervous system. J. Neurochem. 106, 2272–2287 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yoon, K. & Gaiano, N. Notch signaling in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci. 8, 709–715 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Tetzlaff, M.T. et al. Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc. Natl. Acad. Sci. USA 101, 3338–3345 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tsunematsu, R. et al. Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J. Biol. Chem. 279, 9417–9423 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Kramer, E.R. et al. Cooperation between GDNF/Ret and ephrinA/EphA4 signals for motor-axon pathway selection in the limb. Neuron 50, 35–47 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Hartfuss, E., Galli, R., Heins, N. & Götz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol. 229, 15–30 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Reynolds, B.A. & Rietze, R.L. Neural stem cells and neurospheres–re-evaluating the relationship. Nat. Methods 2, 333–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Nateri, A.S., Riera-Sans, L., Da Costa, C. & Behrens, A. The ubiquitin ligase SCFFbw7 antagonizes apoptotic JNK signaling. Science 303, 1374–1378 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Bossy-Wetzel, E., Bakiri, L. & Yaniv, M. Induction of apoptosis by the transcription factor c-Jun. EMBO J. 16, 1695–1709 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whitfield, J., Neame, S.J., Paquet, L., Bernard, O. & Ham, J. Dominant-negative c-Jun promotes neuronal survival by reducing BIM expression and inhibiting mitochondrial cytochrome c release. Neuron 29, 629–643 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ma, C. et al. dp5/HRK is a c-Jun target gene and required for apoptosis induced by potassium deprivation in cerebellar granule neurons. J. Biol. Chem. 282, 30901–30909 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Angel, P., Hattori, K., Smeal, T. & Karin, M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP1. Cell 55, 875–885 (1988).

    Article  CAS  PubMed  Google Scholar 

  24. Gaiano, N., Nye, J.S. & Fishell, G. Radial glial identity is promoted by Notch1 signaling in the murine forebrain. Neuron 26, 395–404 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Anthony, T.E., Mason, H.A., Gridley, T., Fishell, G. & Heintz, N. Brain lipid-binding protein is a direct target of Notch signaling in radial glial cells. Genes Dev. 19, 1028–1033 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Selkoe, D. & Kopan, R. Notch and Presenilin: regulated intramembrane proteolysis links development and degeneration. Annu. Rev. Neurosci. 26, 565–597 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Anthony, T.E., Klein, C., Fishell, G. & Heintz, N. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41, 881–890 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Patten, B.A., Peyrin, J.M., Weinmaster, G. & Corfas, G. Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J. Neurosci. 23, 6132–6140 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coffey, E.T. et al. c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. J. Neurosci. 22, 4335–4345 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang, X. et al. Targeted deletion of the mitogen-activated protein kinase kinase 4 gene in the nervous system causes severe brain developmental defects and premature death. Mol. Cell. Biol. 27, 7935–7946 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chang, L., Jones, Y., Ellisman, M.H., Goldstein, L.S. & Karin, M. JNK1 is required for maintenance of neuronal microtubules and controls phosphorylation of microtubule-associated proteins. Dev. Cell 4, 521–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Ohtsuka, T. et al. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de la Pompa, J.L. et al. Conservation of the Notch signalling pathway in mammalian neurogenesis. Development 124, 1139–1148 (1997).

    CAS  PubMed  Google Scholar 

  35. Nelson, B.R., Hartman, B.H., Georgi, S.A., Lan, M.S. & Reh, T.A. Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev. Biol. 304, 479–498 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hojo, M. et al. Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina. Development 127, 2515–2522 (2000).

    CAS  PubMed  Google Scholar 

  37. Thompson, B.J. et al. Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J. Exp. Med. 205, 1395–1408 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mao, J.H. et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature 432, 775–779 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Welcker, M., Orian, A., Grim, J.E., Eisenman, R.N. & Clurman, B.E. A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr. Biol. 14, 1852–1857 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Sangfelt, O., Cepeda, D., Malyukova, A., van Drogen, F. & Reed, S.I. Both SCFCdc4α and SCFCdc4γ are required for cyclin E turnover in cell lines that do not overexpress cyclin E. Cell Cycle 7, 1075–1082 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. van Drogen, F. et al. Ubiquitylation of cyclin E requires the sequential function of SCF complexes containing distinct hCdc4 isoforms. Mol. Cell 23, 37–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Matsuoka, S. et al. Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 22, 986–991 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pollard, S.M., Conti, L., Sun, Y., Goffredo, D. & Smith, A. Adherent neural stem (NS) cells from fetal and adult forebrain. Cereb. Cortex 16 (suppl. 1): i112–i120 (2006).

    Article  PubMed  Google Scholar 

  44. Behrens, A. et al. Impaired intervertebral disc formation in the absence of Jun. Development 130, 103–109 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Nateri, A.S., Spencer-Dene, B. & Behrens, A. Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437, 281–285 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Animal Unit, Equipment Park, FACS Lab and the Experimental Pathology Lab at the London Research Institute for technical help and advice on histology. We are grateful to F. Radtke (Swiss Institute for Experimental Cancer Research, Lausanne, Switzerland) for floxed Notch1 mice. We thank R. Sancho for the data on Fbxw7 isoform expression in various tissues. We thank C.R. Da Costa, S. Marino and A. Martin-Villalba for critical reading of the manuscript. S.M.B. is supported by a Federation of the Societies of Biochemistry and Molecular Biology (FEBS) Long Term Fellowship. Part of this work is supported by an MRC project grant (85704) to A.B. The London Research Institute is funded by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

J.D.H. designed and conducted the majority of the experiments, did the data analyses and co-wrote the manuscript. A.J. generated the Fbxw7f/f mice and performed the radioactive in situ hybridization. S.M.B. performed the experiments on adherent NSC cultures. E.N. did the IHC stainings. B.S.-D. performed the nonradioactive in situ hybridization. S.B. gave advice on neurosphere sectioning. A.B. supervised the project, directed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Axel Behrens.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19 (PDF 4489 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoeck, J., Jandke, A., Blake, S. et al. Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci 13, 1365–1372 (2010). https://doi.org/10.1038/nn.2644

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2644

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing