Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Local self-renewal can sustain CNS microglia maintenance and function throughout adult life

Abstract

Microgliosis is a common response to multiple types of damage in the CNS. However, the origin of the cells involved in this process is still controversial and the relative importance of local expansion versus recruitment of microglia progenitors from the bloodstream is unclear. Here, we investigated the origin of microglia using chimeric animals obtained by parabiosis. We found no evidence of microglia progenitor recruitment from the circulation in denervation or CNS neurodegenerative disease, suggesting that maintenance and local expansion of microglia are solely dependent on the self-renewal of CNS resident cells in these models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Blood chimerism in parabiotic and lethally irradiated/transplanted mice.
Figure 2: Circulating progenitors do not contribute to the microgliosis that is induced by facial nerve axotomy in parabiotic mice.
Figure 3: Circulating progenitors do not contribute to the microgliosis induced by ALS in the spinal cord of parabiotic mSOD transgenic mice.
Figure 4: Irradiation is not sufficient to trigger the entry of blood born microglia progenitors into the CNS.

Similar content being viewed by others

References

  1. Kreutzberg, G.W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19, 312–318 (1996).

    Article  CAS  Google Scholar 

  2. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  Google Scholar 

  3. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  Google Scholar 

  4. Jensen, M.B., Gonzalez, B., Castellano, B. & Zimmer, J. Microglial and astroglial reactions to anterograde axonal degeneration: a histochemical and immunocytochemical study of the adult rat fascia dentata after entorhinal perforant path lesions. Exp. Brain Res. 98, 245–260 (1994).

    Article  CAS  Google Scholar 

  5. Lehrmann, E., Christensen, T., Zimmer, J., Diemer, N.H. & Finsen, B. Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion. J. Comp. Neurol. 386, 461–476 (1997).

    Article  CAS  Google Scholar 

  6. Gonzalez-Scarano, F. & Baltuch, G. Microglia as mediators of inflammatory and degenerative diseases. Annu. Rev. Neurosci. 22, 219–240 (1999).

    Article  CAS  Google Scholar 

  7. Ponomarev, E.D., Shriver, L.P., Maresz, K. & Dittel, B.N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 81, 374–389 (2005).

    Article  CAS  Google Scholar 

  8. McGeer, P.L. et al. Microglia in degenerative neurological disease. Glia 7, 84–92 (1993).

    Article  CAS  Google Scholar 

  9. Hess, D.C. et al. Hematopoietic origin of microglial and perivascular cells in brain. Exp. Neurol. 186, 134–144 (2004).

    Article  CAS  Google Scholar 

  10. Biffi, A. et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J. Clin. Invest. 113, 1118–1129 (2004).

    Article  CAS  Google Scholar 

  11. Simard, A.R. & Rivest, S. Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia. FASEB J. 18, 998–1000 (2004).

    Article  CAS  Google Scholar 

  12. Priller, J. et al. Targeting gene-modified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment. Nat. Med. 7, 1356–1361 (2001).

    Article  CAS  Google Scholar 

  13. Kennedy, D.W. & Abkowitz, J.L. Kinetics of central nervous system microglial and macrophage engraftment: analysis using a transgenic bone marrow transplantation model. Blood 90, 986–993 (1997).

    CAS  PubMed  Google Scholar 

  14. Flugel, A., Bradl, M., Kreutzberg, G.W. & Graeber, M.B. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J. Neurosci. Res. 66, 74–82 (2001).

    Article  CAS  Google Scholar 

  15. Krall, W.J., Challita, P.M., Perlmutter, L.S., Skelton, D.C. & Kohn, D.B. Cells expressing human glucocerebrosidase from a retroviral vector repopulate macrophages and central nervous system microglia after murine bone marrow transplantation. Blood 83, 2737–2748 (1994).

    CAS  PubMed  Google Scholar 

  16. Asheuer, M. et al. Human CD34+ cells differentiate into microglia and express recombinant therapeutic protein. Proc. Natl. Acad. Sci. USA 101, 3557–3562 (2004).

    Article  CAS  Google Scholar 

  17. Hickey, W.F., Vass, K. & Lassmann, H. Bone marrow–derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J. Neuropathol. Exp. Neurol. 51, 246–256 (1992).

    Article  CAS  Google Scholar 

  18. Hickey, W.F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow–derived and present antigen in vivo. Science 239, 290–292 (1988).

    Article  CAS  Google Scholar 

  19. Massengale, M., Wagers, A.J., Vogel, H. & Weissman, I.L. Hematopoietic cells maintain hematopoietic fates upon entering the brain. J. Exp. Med. 201, 1579–1589 (2005).

    Article  CAS  Google Scholar 

  20. Graeber, M.B., Tetzlaff, W., Streit, W.J. & Kreutzberg, G.W. Microglial cells, but not astrocytes, undergo mitosis following rat facial nerve axotomy. Neurosci. Lett. 85, 317–321 (1988).

    Article  CAS  Google Scholar 

  21. Solomon, J.N. et al. Origin and distribution of bone marrow–derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis. Glia 53, 744–753 (2006).

    Article  Google Scholar 

  22. Li, Y.Q., Chen, P., Jain, V., Reilly, R.M. & Wong, C.S. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord. Radiat. Res. 161, 143–152 (2004).

    Article  CAS  Google Scholar 

  23. Diserbo, M. et al. Blood-brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study. Can. J. Physiol. Pharmacol. 80, 670–678 (2002).

    Article  CAS  Google Scholar 

  24. Rossi, F.M. et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat. Immunol. 6, 626–634 (2005).

    Article  CAS  Google Scholar 

  25. Merad, M. et al. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3, 1135–1141 (2002).

    Article  CAS  Google Scholar 

  26. Ito, D. et al. Microglia-specific localization of a novel calcium binding protein, Iba1. Brain Res. Mol. Brain Res. 57, 1–9 (1998).

    Article  CAS  Google Scholar 

  27. Ladeby, R. et al. Microglial cell population dynamics in the injured adult central nervous system. Brain Res. Brain Res. Rev. 48, 196–206 (2005).

    Article  CAS  Google Scholar 

  28. Graeber, M.B. et al. The microglia/macrophage response in the neonatal rat facial nucleus following axotomy. Brain Res. 813, 241–253 (1998).

    Article  CAS  Google Scholar 

  29. McPhail, L.T., Fernandes, K.J., Chan, C.C., Vanderluit, J.L. & Tetzlaff, W. Axonal reinjury reveals the survival and re-expression of regeneration-associated genes in chronically axotomized adult mouse motoneurons. Exp. Neurol. 188, 331–340 (2004).

    Article  CAS  Google Scholar 

  30. Streit, W.J. & Kreutzberg, G.W. Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. J. Comp. Neurol. 268, 248–263 (1988).

    Article  CAS  Google Scholar 

  31. Moran, L.B. & Graeber, M.B. The facial nerve axotomy model. Brain Res. Brain Res. Rev. 44, 154–178 (2004).

    Article  Google Scholar 

  32. Blinzinger, K. & Kreutzberg, G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z. Zellforsch. Mikrosk. Anat. 85, 145–157 (1968).

    Article  CAS  Google Scholar 

  33. Sedgwick, J.D. et al. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl. Acad. Sci. USA 88, 7438–7442 (1991).

    Article  CAS  Google Scholar 

  34. Corbel, S.Y. et al. Contribution of hematopoietic stem cells to skeletal muscle. Nat. Med. 9, 1528–1532 (2003).

    Article  CAS  Google Scholar 

  35. Hall, E.D., Oostveen, J.A. & Gurney, M.E. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 23, 249–256 (1998).

    Article  CAS  Google Scholar 

  36. Rowland, L.P. & Shneider, N.A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 344, 1688–1700 (2001).

    Article  CAS  Google Scholar 

  37. Rosen, D.R. et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62 (1993).

    Article  CAS  Google Scholar 

  38. Wright, D.E., Wagers, A.J., Gulati, A.P., Johnson, F.L. & Weissman, I.L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  Google Scholar 

  39. Abkowitz, J.L., Robinson, A.E., Kale, S., Long, M.W. & Chen, J. Mobilization of hematopoietic stem cells during homeostasis and after cytokine exposure. Blood 102, 1249–1253 (2003).

    Article  CAS  Google Scholar 

  40. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat. Immunol. 8, 578–583 (2007).

    Article  CAS  Google Scholar 

  41. Priller, J. et al. Early and rapid engraftment of bone marrow–derived microglia in scrapie. J. Neurosci. 26, 11753–11762 (2006).

    Article  CAS  Google Scholar 

  42. Donskoy, E. & Goldschneider, I. Thymocytopoiesis is maintained by blood-borne precursors throughout postnatal life. A study in parabiotic mice. J. Immunol. 148, 1604–1612 (1992).

    CAS  PubMed  Google Scholar 

  43. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  44. Li, S., Wang, X., Klee, C.B. & Krieger, C. Overexpressed mutant G93A superoxide dismutase protects calcineurin from inactivation. Brain Res. Mol. Brain Res. 125, 156–161 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S.Y. Corbel, L. So, C.K. Lam and L. Yi for expert assistance, B. Chua, K. Ranta and the BRC animal unit personnel for advice on animal welfare, and K.M. McNagny for critical evaluation of the manuscript. This work was supported by Canadian Institute for Health Research (CIHR) grants to F.M.V.R. (MOP 81382) and to W.T. (MOP 42480), a Neuromuscular Research Partnership grant from CIHR, a ALS Society of Canada and Muscular Dystrophy Canada grant to C.K. and F.M.V.R. (JNM-69682) and a Collaborative Health Research Grant from CIHR and Natural Science and Engineering Research Council to C.K. and F.M.V.R. (CHRP 299119). J.L.B. is supported by a Multiple Sclerosis Society of Canada Postdoctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

B.A. conducted all of the experiments and participated in experimental design and interpretation as well as in the writing of the manuscript. J.L.B. provided guidance in designing and conducting the flow cytometry and participated in writing the manuscript. C.K. participated in writing the manuscript and designing the ALS experiments. W.T. conducted the facial axotomy surgeries and participated in the design of experiments as well as in the writing of the manuscript. F.M.V.R. designed and interpreted experiments, and wrote the manuscript.

Corresponding author

Correspondence to Fabio M V Rossi.

Supplementary information

Supplementary Information

Supplementary Figures 1–4, Tables 1 and 2 (PDF 5220 kb)

Supplementary Video 1 (MOV 420 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ajami, B., Bennett, J., Krieger, C. et al. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10, 1538–1543 (2007). https://doi.org/10.1038/nn2014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2014

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing