Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Acquired resistance to immunotherapy and future challenges

Abstract

Advances in immunotherapy have resulted in remarkable clinical responses in some patients. However, one of the biggest challenges in cancer therapeutics is the development of resistant disease and disease progression on or after therapy. Given that many patients have now received various types of immunotherapy, we asked three scientists to give their views on the current evidence for whether acquired resistance to immunotherapy exists in patients and the future challenges posed by immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Restifo, N. P., Dudley, M. E. & Rosenberg, S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat. Rev. Immunol. 12, 269–281 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Khong, H. T. & Restifo, N. P. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat. Immunol. 3, 999–1005 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Restifo, N. P. et al. Loss of functional beta2-microglobulin in metastatic melanomas from five patients receiving immunotherapy. J. Natl Cancer Inst. 88, 100–108 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Pardoll, D. Cancer and the immune system: basic concepts and targets for intervention. Semin. Oncol. 42, 523–538 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Palmer, D. C. et al. Effective tumor treatment targeting a melanoma/melanocyte-associated antigen triggers severe ocular autoimmunity. Proc. Natl Acad. Sci. USA 105, 8061–8066 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Prieto, P. A. et al. CTLA-4 blockade with ipilimumab: long-term follow-up of 177 patients with metastatic melanoma. Clin. Cancer Res. 18, 2039–2047 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ribas, A. Adaptive immune resistance: how cancer protects from immune attack. Cancer Discov. 5, 915–919 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen, B. J. et al. PD-L1 expression is characteristic of a subset of aggressive B-cell lymphomas and virus-associated malignancies. Clin. Cancer Res. 19, 3462–3473 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Spranger, S. et al. Up-regulation of PD-L1, IDO, and Tregs in the melanoma tumor microenvironment is driven by CD8+ T cells. Sci. Transl Med. 5, 200ra116 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Markel, G. et al. Dynamic expression of protective CEACAM1 on melanoma cells during specific immune attack. Immunology 126, 186–200 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Landsberg, J. et al. Melanomas resist T-cell therapy through inflammation-induced reversible dedifferentiation. Nature 490, 412–416 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Snyder, A. et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N. Engl. J. Med. 371, 2189–2199 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eggermont, A. M. et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial. Lancet Oncol. 16, 522–530 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Thomas, L. On immunosurveillance in human cancer. Yale J. Biol. Med. 55, 329–333 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    Article  CAS  PubMed  Google Scholar 

  19. Rammensee, H. G., Friede, T. & Stevanoviic, S. MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178–228 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Rosenberg, S. A. & Restifo, N. P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 348, 62–68 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shankaran, V. et al. IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. O'Sullivan, T. et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J. Exp. Med. 209, 1869–1882 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smyth, M. J. et al. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J. Exp. Med. 192, 755–760 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takeda, K. et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 195, 161–169 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koebel, C. M. et al. Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450, 903–907 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Matsushita, H. et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 482, 400–404 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. DuPage, M., Mazumdar, C., Schmidt, L. M., Cheung, A. F. & Jacks, T. Expression of tumour-specific antigens underlies cancer immunoediting. Nature 482, 405–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rizvi, N. A. et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348, 124–128 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. van Allen, E. M. et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350, 207–211 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Le, D. T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Gubin, M. M. et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Joyce, J. A. & Fearon, D. T. T cell exclusion, immune privilege, and the tumor microenvironment. Science 348, 74–80 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Rajasagi, M. et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 124, 453–462 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gattinoni, L., Klebanoff, C. A. & Restifo, N. P. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12, 671–684 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Klebanoff, C.A., Rosenberg, S.A. & Restifo, N.P. Prospects for gene-engineered T cell immunotherapy for solid cancers. Nat. Med. 22, 26–36 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Snyder, A. et al. Genetics and immunology: reinvigorated. Oncoimmunology 4, e1029705 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Snyder, A., Wolchok, J. D. & Chan, T. A. Genetic basis for clinical response to CTLA-4 blockade. N. Engl. J. Med. 372, 783 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Gubin, M. M. & Schreiber, R. D. The odds of immunotherapy success. Science 350, 158–159 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Teng, M. W., Ngiow, S. F., Ribas, A. & Smyth, M. J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res. 75, 2139–2145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taube, J. M. et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 20, 5064–5074 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Postow, M. A. et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N. Engl. J. Med. 372, 2006–2017 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Victor, C. T. et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature 520, 373–377 (2015).

    Article  PubMed Central  Google Scholar 

  46. Liu, S. V. P. J. et al. Safety and efficacy of MPDL3280A (anti-PDL1) in combination with platinum-based doublet chemotherapy in patients with advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. 33 (15 Suppl.), 8030 (2015).

    Article  Google Scholar 

  47. John, L. B. et al. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin. Cancer Res. 19, 5636–5646 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Saltz, L. B. Can money really be no object when cancer care is the subject? J. Clin. Oncol. 33, 1093–1094 (2015).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nicholas P. Restifo, Mark J. Smyth or Alexandra Snyder.

Ethics declarations

Competing interests

M.J.S. declares a research agreement with Bristol Myers Squibb and Medimmune. A.S. is a consultant of Neon Therapeutics. N.P.R declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Restifo, N., Smyth, M. & Snyder, A. Acquired resistance to immunotherapy and future challenges. Nat Rev Cancer 16, 121–126 (2016). https://doi.org/10.1038/nrc.2016.2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing