Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The interplay between cell signalling and the mevalonate pathway in cancer

Key Points

  • Mevalonate (MVA) pathway metabolites are essential for cancer cell survival and growth.

  • Expression of the genes encoding MVA pathway enzymes is controlled by the sterol regulatory element-binding protein (SREBP) family of transcription factors.

  • In cancer cells, oncogenic signalling pathways deregulate the activity of the SREBP transcription factors and MVA pathway enzymes.

  • Deregulated production of MVA pathway metabolites modulates multiple signalling pathways in cancer cells and contributes to transformation.

  • Clinical trials to evaluate the utility of MVA pathway inhibitors as anticancer agents have shown responses in some, but not all, patients; discovering biomarkers to identify responders and developing combination therapies will further enhance the utility of these inhibitors.

  • Inhibiting the SREBP transcription factors is a promising strategy to increase the efficacy of MVA pathway inhibitors as anticancer therapeutics, and also potentially to combat resistance to MVA pathway therapies.

Abstract

The mevalonate (MVA) pathway is an essential metabolic pathway that uses acetyl-CoA to produce sterols and isoprenoids that are integral to tumour growth and progression. In recent years, many oncogenic signalling pathways have been shown to increase the activity and/or the expression of MVA pathway enzymes. This Review summarizes recent advances and discusses unique opportunities for immediately targeting this metabolic vulnerability in cancer with agents that have been approved for other therapeutic uses, such as the statin family of drugs, to improve outcomes for cancer patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the MVA pathway.
Figure 2: The chemical reactions of the MVA pathway.
Figure 3: The SREBP-regulated sterol feedback response controls the transcription of MVA pathway (and other) genes.
Figure 4: SREBP processing and activity are regulated by PI3K signalling at multiple levels.
Figure 5: Transcriptional control of MVA pathway gene transcription by oncogenes and tumour suppressors.
Figure 6: Activation of the MVA pathway drives oncogenic signalling pathways.
Figure 7: Inhibition of both the MVA pathway and the SREBP transcription factors is a viable cancer therapeutic strategy.

Similar content being viewed by others

References

  1. Boroughs, L. K. & DeBerardinis, R. J. Metabolic pathways promoting cancer cell survival and growth. Nat. Cell Biol. 17, 351–359 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Son, J. et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496, 101–105 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Possemato, R. et al. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature 476, 346–350 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mardis, E. R. et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N. Engl. J. Med. 361, 1058–1066 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Christofk, H. R. et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452, 230–233 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Patra, K. C. et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer Cell 24, 213–228 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Adam, J., Yang, M., Soga, T. & Pollard, P. J. Rare insights into cancer biology. Oncogene 33, 2547–2556 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Goldstein, J. L. & Brown, M. S. Familial hypercholesterolemia: identification of a defect in the regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity associated with overproduction of cholesterol. Proc. Natl Acad. Sci. USA 70, 2804–2808 (1973). This manuscript was the first to suggest that a genetic abnormality could lead to the deregulation of HMGCR and could result in a defect in the regulation of cholesterol synthesis. It contributed to Goldstein and Brown winning the Nobel Prize in Physiology or Medicine in 1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clendening, J. W. & Penn, L. Z. Targeting tumor cell metabolism with statins. Oncogene 31, 4967–4978 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F. & Kroemer, G. Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab. 21, 805–821 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Schug, Z. T. et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell 27, 57–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeon, S. M., Chandel, N. S. & Hay, N. AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature 485, 661–665 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anastasiou, D. et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334, 1278–1283 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sharpe, L. J. & Brown, A. J. Controlling cholesterol synthesis beyond 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). J. Biol. Chem. 288, 18707–18715 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hart, T. et al. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell 163, 1515–1526 (2015). MVA pathway genes were found to be essential in multiple cancer cell types, highlighting the dependency of cancer cells on the MVA pathway.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, T. et al. Identification and characterization of essential genes in the human genome. Science 350, 1096–1101 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Clendening, J. W. et al. Exploiting the mevalonate pathway to distinguish statin-sensitive multiple myeloma. Blood 115, 4787–4797 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Goard, C. A. et al. Identifying molecular features that distinguish fluvastatin-sensitive breast tumor cells. Breast Cancer Res. Treat. 143, 301–312 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Keyomarsi, K., Sandoval, L., Band, V. & Pardee, A. B. Synchronization of tumor and normal cells from G1 to multiple cell cycles by lovastatin. Cancer Res. 51, 3602–3609 (1991).

    CAS  PubMed  Google Scholar 

  24. Dimitroulakos, J. et al. Microarray and biochemical analysis of lovastatin-induced apoptosis of squamous cell carcinomas. Neoplasia 4, 337–346 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dimitroulakos, J. et al. Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood 93, 1308–1318 (1999).

    CAS  PubMed  Google Scholar 

  26. Larson, R. A. & Yachnin, S. Mevalonic acid induces DNA synthesis in chronic lymphocytic leukemia cells. Blood 64, 257–262 (1984).

    CAS  PubMed  Google Scholar 

  27. Clendening, J. W. et al. Dysregulation of the mevalonate pathway promotes transformation. Proc. Natl Acad. Sci. USA 107, 15051–15056 (2010). This study was the first to show that a flux-controlling enzyme of the MVA pathway, HMGCR, can promote transformation.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Duncan, R. E., El-Sohemy, A. & Archer, M. C. Mevalonate promotes the growth of tumors derived from human cancer cells in vivo and stimulates proliferation in vitro with enhanced cyclin-dependent kinase-2 activity. J. Biol. Chem. 279, 33079–33084 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Bloch, K. The biological synthesis of cholesterol. Science 150, 19–28 (1965).

    Article  CAS  PubMed  Google Scholar 

  30. Goldstein, J. L. & Brown, M. S. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu. Rev. Biochem. 46, 897–930 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Pike, L. J. The challenge of lipid rafts. J. Lipid Res. 50 (Suppl.), S323–S328 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mollinedo, F. & Gajate, C. Lipid rafts as major platforms for signaling regulation in cancer. Adv. Biol. Regul. 57, 130–146 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Ray, S., Kassan, A., Busija, A. R., Rangamani, P. & Patel, H. H. The plasma membrane as a capacitor for energy and metabolism. Am. J. Physiol. Cell Physiol. 310, C181–C192 (2015).

    Article  PubMed  Google Scholar 

  34. York, A. G. et al. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716–1729 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, H. Y., Appelbaum, F. R., Willman, C. L., Zager, R. A. & Banker, D. E. Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood 101, 3628–3634 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Novak, A. et al. Cholesterol masks membrane glycosphingolipid tumor-associated antigens to reduce their immunodetection in human cancer biopsies. Glycobiology 23, 1230–1239 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Ko, Y. J. & Balk, S. P. Targeting steroid hormone receptor pathways in the treatment of hormone dependent cancers. Curr. Pharm. Biotechnol. 5, 459–470 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Lin, C. Y. & Gustafsson, J. A. Targeting liver X receptors in cancer therapeutics. Nat. Rev. Cancer 15, 216–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Krycer, J. R. & Brown, A. J. Cholesterol accumulation in prostate cancer: a classic observation from a modern perspective. Biochim. Biophys. Acta 1835, 219–229 (2013).

    CAS  PubMed  Google Scholar 

  40. Miziorko, H. M. Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch. Biochem. Biophys. 505, 131–143 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gruenbacher, G. & Thurnher, M. Mevalonate metabolism in cancer. Cancer Lett. 356, 192–196 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Thurnher, M. & Gruenbacher, G. T lymphocyte regulation by mevalonate metabolism. Sci. Signal. 8, re4 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Meraviglia, S. et al. In vivo manipulation of Vγ9Vδ2 T cells with zoledronate and low-dose interleukin-2 for immunotherapy of advanced breast cancer patients. Clin. Exp. Immunol. 161, 290–297 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dieli, F. et al. Targeting human γδ T cells with zoledronate and interleukin-2 for immunotherapy of hormone-refractory prostate cancer. Cancer Res. 67, 7450–7457 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Willumsen, B. M., Christensen, A., Hubbert, N. L., Papageorge, A. G. & Lowy, D. R. The p21 ras C-terminus is required for transformation and membrane association. Nature 310, 583–586 (1984).

    Article  CAS  PubMed  Google Scholar 

  46. Hart, K. C. & Donoghue, D. J. Derivatives of activated H-ras lacking C-terminal lipid modifications retain transforming ability if targeted to the correct subcellular location. Oncogene 14, 945–953 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clarke, S., Vogel, J. P., Deschenes, R. J. & Stock, J. Posttranslational modification of the Ha-ras oncogene protein: evidence for a third class of protein carboxyl methyltransferases. Proc. Natl Acad. Sci. USA 85, 4643–4647 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Moores, S. L. et al. Sequence dependence of protein isoprenylation. J. Biol. Chem. 266, 14603–14610 (1991).

    CAS  PubMed  Google Scholar 

  49. Casey, P. J. & Seabra, M. C. Protein prenyltransferases. J. Biol. Chem. 271, 5289–5292 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Kang, S., Kim, E. S. & Moon, A. Simvastatin and lovastatin inhibit breast cell invasion induced by H-Ras. Oncol. Rep. 21, 1317–1322 (2009).

    PubMed  Google Scholar 

  51. Pandyra, A. et al. Immediate utility of two approved agents to target both the metabolic mevalonate pathway and its restorative feedback loop. Cancer Res. 74, 4772–4782 (2014). This study demonstrated the feasibility of targeting SREBP2 to potentiate the anticancer effects of statins.

    Article  CAS  PubMed  Google Scholar 

  52. Wong, W. W. et al. Determinants of sensitivity to lovastatin-induced apoptosis in multiple myeloma. Mol. Cancer Ther. 6, 1886–1897 (2007). This was one of the first studies to show that the isoprenoids GGPP and FPP can reverse statin-induced apoptosis.

    Article  CAS  PubMed  Google Scholar 

  53. Agarwal, B. et al. Mechanism of lovastatin-induced apoptosis in intestinal epithelial cells. Carcinogenesis 23, 521–528 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Jiang, Z., Zheng, X., Lytle, R. A., Higashikubo, R. & Rich, K. M. Lovastatin-induced up-regulation of the BH3-only protein, Bim, and cell death in glioblastoma cells. J. Neurochem. 89, 168–178 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Shellman, Y. G. et al. Lovastatin-induced apoptosis in human melanoma cell lines. Melanoma Res. 15, 83–89 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Xia, Z. et al. Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15, 1398–1407 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Stirewalt, D. L., Appelbaum, F. R., Willman, C. L., Zager, R. A. & Banker, D. E. Mevastatin can increase toxicity in primary AMLs exposed to standard therapeutic agents, but statin efficacy is not simply associated with ras hotspot mutations or overexpression. Leuk. Res. 27, 133–145 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Hentschel, A., Zahedi, R. P. & Ahrends, R. Protein lipid modifications—more than just a greasy ballast. Proteomics 16, 759–782 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Berndt, N., Hamilton, A. D. & Sebti, S. M. Targeting protein prenylation for cancer therapy. Nat. Rev. Cancer 11, 775–791 (2011). This review comprehensively summarizes the feasibility and efficacy of targeting protein prenylation in cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cox, A. D., Der, C. J. & Philips, M. R. Targeting RAS membrane association: back to the future for anti-RAS drug discovery? Clin. Cancer Res. 21, 1819–1827 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Swanson, K. M. & Hohl, R. J. Anti-cancer therapy: targeting the mevalonate pathway. Curr. Cancer Drug Targets 6, 15–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Wiemer, A. J., Wiemer, D. F. & Hohl, R. J. Geranylgeranyl diphosphate synthase: an emerging therapeutic target. Clin. Pharmacol. Ther. 90, 804–812 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Tsimberidou, A. M., Chandhasin, C. & Kurzrock, R. Farnesyltransferase inhibitors: where are we now? Expert Opin. Investig. Drugs 19, 1569–1580 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Martin, N. E. et al. A phase I trial of the dual farnesyltransferase and geranylgeranyltransferase inhibitor L-778,123 and radiotherapy for locally advanced pancreatic cancer. Clin. Cancer Res. 10, 5447–5454 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Ullah, N., Mansha, M. & Casey, P. J. Protein geranylgeranyltransferase type 1 as a target in cancer. Curr. Cancer Drug Targets https://dx.doi.org/10.2174/1568009616666151203224603 (2015).

  67. Chojnacki, T. & Dallner, G. The biological role of dolichol. Biochem. J. 251, 1–9 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Carlberg, M. et al. Mevalonic acid is limiting for N-linked glycosylation and translocation of the insulin-like growth factor-1 receptor to the cell surface. Evidence for a new link between 3-hydroxy-3- methylglutaryl-coenzyme a reductase and cell growth. J. Biol. Chem. 271, 17453–17462 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Pinho, S. S. & Reis, C. A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer 15, 540–555 (2015). This review summarizes the role of aberrant glycosylation in cancer development and progression.

    Article  CAS  PubMed  Google Scholar 

  70. Cheng, C. et al. Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell 28, 569–581 (2015). This study links glucose metabolism to the MVA pathway via the N -glycosylation of SCAP.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ernster, L. & Dallner, G. Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1271, 195–204 (1995).

    Article  PubMed  Google Scholar 

  72. Maiuri, M. C. & Kroemer, G. Essential role for oxidative phosphorylation in cancer progression. Cell Metab. 21, 11–12 (2015).

    Article  CAS  PubMed  Google Scholar 

  73. Tan, A. S. et al. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA. Cell Metab. 21, 81–94 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Hua, X. et al. SREBP-2, a second basic-helix-loop-helix-leucine zipper protein that stimulates transcription by binding to a sterol regulatory element. Proc. Natl Acad. Sci. USA 90, 11603–11607 (1993). Brown and Goldstein follow up their Nobel Prize-winning work by identifying SREBP2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Yokoyama, C. et al. SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene. Cell 75, 187–197 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Amemiya-Kudo, M. et al. Transcriptional activities of nuclear SREBP-1a, -1c, and -2 to different target promoters of lipogenic and cholesterogenic genes. J. Lipid Res. 43, 1220–1235 (2002).

    CAS  PubMed  Google Scholar 

  77. Shimomura, I., Shimano, H., Horton, J. D., Goldstein, J. L. & Brown, M. S. Differential expression of exons 1a and 1c in mRNAs for sterol regulatory element binding protein-1 in human and mouse organs and cultured cells. J. Clin. Invest. 99, 838–845 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seo, Y. K. et al. Genome-wide analysis of SREBP-1 binding in mouse liver chromatin reveals a preference for promoter proximal binding to a new motif. Proc. Natl Acad. Sci. USA 106, 13765–13769 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Seo, Y. K. et al. Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell Metab. 13, 367–375 (2011). This study was the first to map the chromatin binding of SREBP2 genome-wide.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fruman, D. A. & Rommel, C. PI3K and cancer: lessons, challenges and opportunities. Nat. Rev. Drug Discov. 13, 140–156 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat. Rev. Cancer 9, 550–562 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Song, M. S., Salmena, L. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor. Nat. Rev. Mol. Cell. Biol. 13, 283–296 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Demoulin, J. B. et al. Platelet-derived growth factor stimulates membrane lipid synthesis through activation of phosphatidylinositol 3-kinase and sterol regulatory element-binding proteins. J. Biol. Chem. 279, 35392–35402 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Zhou, R. H. et al. Vascular endothelial growth factor activation of sterol regulatory element binding protein: a potential role in angiogenesis. Circ. Res. 95, 471–478 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Fleischmann, M. & Iynedjian, P. B. Regulation of sterol regulatory-element binding protein 1 gene expression in liver: role of insulin and protein kinase B/cAkt. Biochem. J. 349, 13–17 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Luu, W., Sharpe, L. J., Stevenson, J. & Brown, A. J. Akt acutely activates the cholesterogenic transcription factor SREBP-2. Biochim. Biophys. Acta 1823, 458–464 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Porstmann, T. et al. PKB/Akt induces transcription of enzymes involved in cholesterol and fatty acid biosynthesis via activation of SREBP. Oncogene 24, 6465–6481 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Suzuki, R. et al. Diabetes and insulin in regulation of brain cholesterol metabolism. Cell Metab. 12, 567–579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jeon, T. I. & Osborne, T. F. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol. Metab. 23, 65–72 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Ricoult, S. J., Yecies, J. L., Ben-Sahra, I. & Manning, B. D. Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene 35, 1250–1260 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sundqvist, A. et al. Control of lipid metabolism by phosphorylation-dependent degradation of the SREBP family of transcription factors by SCF(Fbw7). Cell Metab. 1, 379–391 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Yellaturu, C. R., Deng, X., Park, E. A., Raghow, R. & Elam, M. B. Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP). SREBP-1c complex. J. Biol. Chem. 284, 31726–31734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hegarty, B. D. et al. Distinct roles of insulin and liver X receptor in the induction and cleavage of sterol regulatory element-binding protein-1c. Proc. Natl Acad. Sci. USA 102, 791–796 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yecies, J. L. et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14, 21–32 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Du, X., Kristiana, I., Wong, J. & Brown, A. J. Involvement of Akt in ER-to-Golgi transport of SCAP/SREBP: a link between a key cell proliferative pathway and membrane synthesis. Mol. Biol. Cell 17, 2735–2745 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yellaturu, C. R. et al. Insulin enhances post-translational processing of nascent SREBP-1c by promoting its phosphorylation and association with COPII vesicles. J. Biol. Chem. 284, 7518–7532 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yamauchi, Y., Furukawa, K. & Hamamura, K. Positive feedback loop between PI3K-Akt-mTORC1 signaling and the lipogenic pathway boosts Akt signaling: induction of the lipogenic pathway by a melanoma antigen. Cancer Res. 71, 4989–4997 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Calvisi, D. F. et al. Increased lipogenesis, induced by AKT-mTORC1-RPS6 signaling, promotes development of human hepatocellular carcinoma. Gastroenterology 140, 1071–1083 (2011).

    Article  CAS  PubMed  Google Scholar 

  99. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    Article  CAS  PubMed  Google Scholar 

  100. Kusama, T. et al. 3-Hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. Gastroenterology 122, 308–317 (2002).

    Article  CAS  PubMed  Google Scholar 

  101. Asslan, R. et al. Epidermal growth factor stimulates 3-hydroxy-3-methylglutaryl-coenzyme A reductase expression via the ErbB-2 pathway in human breast adenocarcinoma cells. Biochem. Biophys. Res. Commun. 260, 699–706 (1999).

    Article  CAS  PubMed  Google Scholar 

  102. Shimobayashi, M. & Hall, M. N. Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell. Biol. 15, 155–162 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Chung, J., Kuo, C. J., Crabtree, G. R. & Blenis, J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69, 1227–1236 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Kuo, C. J. et al. Rapamycin selectively inhibits interleukin-2 activation of p70 S6 kinase. Nature 358, 70–73 (1992).

    Article  CAS  PubMed  Google Scholar 

  105. Von Manteuffel, S. R., Gingras, A. C., Ming, X. F., Sonenberg, N. & Thomas, G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl Acad. Sci. USA 93, 4076–4080 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008). This study shows that the activation of SREBPs through AKT–mTORC1 is required for cell growth.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, S., Brown, M. S. & Goldstein, J. L. Bifurcation of insulin signaling pathway in rat liver: mTORC1 required for stimulation of lipogenesis, but not inhibition of gluconeogenesis. Proc. Natl Acad. Sci. USA 107, 3441–3446 (2010). This study offers an explanation for the paradox of insulin resistance, in which insulin fails to suppress glucose production but continues to promote lipid synthesis.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell. 39, 171–183 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Wang, B. T. et al. The mammalian target of rapamycin regulates cholesterol biosynthetic gene expression and exhibits a rapamycin-resistant transcriptional profile. Proc. Natl Acad. Sci. USA 108, 15201–15206 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Liu, Q. et al. Development of ATP-competitive mTOR inhibitors. Methods Mol. Biol. 821, 447–460 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Peterson, T. R. et al. mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146, 408–420 (2011). New mTOR inhibitors enabled this work to identify a target of mTOR that regulates SREBP activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang, P., Verity, M. A. & Reue, K. Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle. Cell Metab. 20, 267–279 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Shao, W. & Espenshade, P. J. Expanding roles for SREBP in metabolism. Cell Metab. 16, 414–419 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Griffiths, B. et al. Sterol regulatory element binding protein-dependent regulation of lipid synthesis supports cell survival and tumor growth. Cancer Metab. 1, 3 (2013). This is the first study to show that ablation of SREBPs affects both lipid and protein biosynthesis.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hardie, D. G. & Alessi, D. R. LKB1 and AMPK and the cancer-metabolism link – ten years after. BMC Biol. 11, 36 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Beg, Z. H., Allmann, D. W. & Gibson, D. M. Modulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity with cAMP and wth protein fractions of rat liver cytosol. Biochem. Biophys. Res. Commun. 54, 1362–1369 (1973).

    Article  CAS  PubMed  Google Scholar 

  118. Beg, Z. H., Stonik, J. A. & Brewer, H. B. Jr. 3-Hydroxy-3-methylglutaryl coenzyme A reductase: regulation of enzymatic activity by phosphorylation and dephosphorylation. Proc. Natl Acad. Sci. USA 75, 3678–3682 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Clarke, P. R. & Hardie, D. G. Regulation of HMG-CoA reductase: identification of the site phosphorylated by the AMP-activated protein kinase in vitro and in intact rat liver. EMBO J. 9, 2439–2446 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sato, R., Goldstein, J. L. & Brown, M. S. Replacement of serine-871 of hamster 3-hydroxy-3-methylglutaryl-CoA reductase prevents phosphorylation by AMP-activated kinase and blocks inhibition of sterol synthesis induced by ATP depletion. Proc. Natl Acad. Sci. USA 90, 9261–9265 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Li, Y. et al. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13, 376–388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Collins, S. P., Reoma, J. L., Gamm, D. M. & Uhler, M. D. LKB1, a novel serine/threonine protein kinase and potential tumour suppressor, is phosphorylated by cAMP-dependent protein kinase (PKA) and prenylated in vivo. Biochem. J. 345, 673–680 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Houde, V. P. et al. Investigation of LKB1 Ser431 phosphorylation and Cys433 farnesylation using mouse knockin analysis reveals an unexpected role of prenylation in regulating AMPK activity. Biochem. J. 458, 41–56 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Petitjean, A., Achatz, M. I., Borresen-Dale, A. L., Hainaut, P. & Olivier, M. TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157–2165 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Freed-Pastor, W. A. et al. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell 148, 244–258 (2012). This study was the first to demonstrate that specific gain-of-function p53 mutants activate the MVA pathway in cancer cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Assaily, W. et al. ROS-mediated p53 induction of Lpin1 regulates fatty acid oxidation in response to nutritional stress. Mol. Cell. 44, 491–501 (2011).

    Article  CAS  PubMed  Google Scholar 

  128. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  129. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 163, 1011–1025 (2015).

  130. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature 489, 519–525 (2012).

  131. Shamma, A. et al. Rb regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 15, 255–269 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Tu, W. B. et al. Myc and its interactors take shape. Biochim. Biophys. Acta 1849, 469–483 (2015).

    Article  CAS  PubMed  Google Scholar 

  134. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Meyer, N. & Penn, L. Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer 8, 976–990 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Wu, Y. et al. Srebp-1 interacts with c-Myc to enhance somatic cell reprogramming. Stem Cells 34, 83–92 (2015).

    Article  CAS  PubMed  Google Scholar 

  137. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  138. Dingar, D. et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J. Proteom. 118, 95–111 (2015).

    Article  CAS  Google Scholar 

  139. Cao, Z. et al. MYC phosphorylation, activation, and tumorigenic potential in hepatocellular carcinoma are regulated by HMG-CoA reductase. Cancer Res. 71, 2286–2297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hofmann, J. W. et al. Reduced expression of MYC increases longevity and enhances healthspan. Cell 160, 477–488 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Sorrentino, G. et al. Metabolic control of YAP and TAZ by the mevalonate pathway. Nat. Cell Biol. 16, 357–366 (2014). This study provides compelling evidence of the importance of MVA-derived metabolites in cancer.

    Article  CAS  PubMed  Google Scholar 

  142. Zanconato, F., Cordenonsi, M. & Piccolo, S. YAP/TAZ at the roots of cancer. Cancer Cell 29, 783–803 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Moroishi, T., Hansen, C. G. & Guan, K. L. The emerging roles of YAP and TAZ in cancer. Nat. Rev. Cancer 15, 73–79 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wang, Z. et al. Interplay of mevalonate and Hippo pathways regulates RHAMM transcription via YAP to modulate breast cancer cell motility. Proc. Natl Acad. Sci. USA 111, E89–E98 (2014).

    Article  CAS  PubMed  Google Scholar 

  145. Mi, W. et al. Geranylgeranylation signals to the Hippo pathway for breast cancer cell proliferation and migration. Oncogene 34, 3095–3106 (2015).

    Article  CAS  PubMed  Google Scholar 

  146. Aylon, Y. et al. The LATS2 tumor suppressor inhibits SREBP and suppresses hepatic cholesterol accumulation. Genes Dev. 30, 786–797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Riobo, N. A. Cholesterol and its derivatives in Sonic Hedgehog signaling and cancer. Curr. Opin. Pharmacol. 12, 736–741 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Eaton, S. Multiple roles for lipids in the Hedgehog signalling pathway. Nat. Rev. Mol. Cell. Biol. 9, 437–445 (2008).

    Article  CAS  PubMed  Google Scholar 

  149. Corcoran, R. B. & Scott, M. P. Oxysterols stimulate Sonic hedgehog signal transduction and proliferation of medulloblastoma cells. Proc. Natl Acad. Sci. USA 103, 8408–8413 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Nguyen, V. T. et al. Differential epigenetic reprogramming in response to specific endocrine therapies promotes cholesterol biosynthesis and cellular invasion. Nat. Commun. 6, 10044 (2015).

    Article  CAS  PubMed  Google Scholar 

  151. Locke, J. A. et al. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res. 68, 6407–6415 (2008).

    Article  CAS  PubMed  Google Scholar 

  152. Ettinger, S. L. et al. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res. 64, 2212–2221 (2004).

    Article  CAS  PubMed  Google Scholar 

  153. Huang, W. C., Li, X., Liu, J., Lin, J. & Chung, L. W. Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol. Cancer Res. 10, 133–142 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Goldstein, J. L. & Brown, M. S. Regulation of the mevalonate pathway. Nature 343, 425–430 (1990).

    Article  CAS  PubMed  Google Scholar 

  155. Ahern, T. P. et al. Statin prescriptions and breast cancer recurrence risk: a Danish nationwide prospective cohort study. J. Natl Cancer Inst. 103, 1461–1468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fortuny, J. et al. Use of analgesics and nonsteroidal anti-inflammatory drugs, genetic predisposition, and bladder cancer risk in Spain. Cancer Epidemiol. Biomarkers Prev. 15, 1696–1702 (2006).

    Article  CAS  PubMed  Google Scholar 

  157. Nielsen, S. F., Nordestgaard, B. G. & Bojesen, S. E. Statin use and reduced cancer-related mortality. N. Engl. J. Med. 367, 1792–1802 (2012). An important study showing reduced deaths from cancer in statin users.

    Article  CAS  PubMed  Google Scholar 

  158. Freedland, S. J. et al. Statin use and risk of prostate cancer and high-grade prostate cancer: results from the REDUCE study. Prostate Cancer Prostat. Dis. 16, 254–259 (2013).

    Article  CAS  Google Scholar 

  159. Kuoppala, J., Lamminpaa, A. & Pukkala, E. Statins and cancer: a systematic review and meta-analysis. Eur. J. Cancer 44, 2122–2132 (2008).

    Article  CAS  PubMed  Google Scholar 

  160. Chae, Y. K. et al. Reduced risk of breast cancer recurrence in patients using ACE inhibitors, ARBs, and/or statins. Cancer Invest. 29, 585–593 (2011).

    Article  CAS  PubMed  Google Scholar 

  161. Boudreau, D. M. et al. Comparative safety of cardiovascular medication use and breast cancer outcomes among women with early stage breast cancer. Breast Cancer Res. Treat. 144, 405–416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kwan, M. L., Habel, L. A., Flick, E. D., Quesenberry, C. P. & Caan, B. Post-diagnosis statin use and breast cancer recurrence in a prospective cohort study of early stage breast cancer survivors. Breast Cancer Res. Treat. 109, 573–579 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Chen, C., Lin, J., Smolarek, T. & Tremaine, L. P-Glycoprotein has differential effects on the disposition of statin acid and lactone forms in mdr1a/b knockout and wild-type mice. Drug Metab. Dispos. 35, 1725–1729 (2007).

    Article  CAS  PubMed  Google Scholar 

  164. Moon, H., Hill, M. M., Roberts, M. J., Gardiner, R. A. & Brown, A. J. Statins: protectors or pretenders in prostate cancer? Trends Endocrinol. Metab. 25, 188–196 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Wong, W. W., Dimitroulakos, J., Minden, M. D. & Penn, L. Z. HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 16, 508–519 (2002).

    Article  CAS  PubMed  Google Scholar 

  166. Wong, W. W. et al. Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin. Clin. Cancer Res. 7, 2067–2075 (2001).

    CAS  PubMed  Google Scholar 

  167. Dimitroulakos, J. et al. Lovastatin induces a pronounced differentiation response in acute myeloid leukemias. Leuk. Lymphoma 40, 167–178 (2000).

    Article  CAS  PubMed  Google Scholar 

  168. Martirosyan, A., Clendening, J. W., Goard, C. A. & Penn, L. Z. Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: potential therapeutic relevance. BMC Cancer 10, 103 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Mas, E. & Mori, T. A. Coenzyme Q(10) and statin myalgia: what is the evidence? Curr. Atheroscler. Rep. 12, 407–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  170. Harper, C. R. & Jacobson, T. A. Evidence-based management of statin myopathy. Curr. Atheroscler. Rep. 12, 322–330 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Bjarnadottir, O. et al. Targeting HMG-CoA reductase with statins in a window-of-opportunity breast cancer trial. Breast Cancer Res. Treat. 138, 499–508 (2013).

    Article  CAS  PubMed  Google Scholar 

  172. Garwood, E. R. et al. Fluvastatin reduces proliferation and increases apoptosis in women with high grade breast cancer. Breast Cancer Res. Treat. 119, 137–144 (2010). The first window-of-opportunity, pre-operative trial to demonstrate that fluvastatin can reduce proliferation and increase the apoptosis of tumour cells in women with early stage, high-grade breast cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Graf, H. et al. Chemoembolization combined with pravastatin improves survival in patients with hepatocellular carcinoma. Digestion 78, 34–38 (2008).

    Article  CAS  PubMed  Google Scholar 

  174. Kornblau, S. M. et al. Blockade of adaptive defensive changes in cholesterol uptake and synthesis in AML by the addition of pravastatin to idarubicin + high-dose Ara-C: a phase 1 study. Blood 109, 2999–3006 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Hus, M. et al. Thalidomide, dexamethasone and lovastatin with autologous stem cell transplantation as a salvage immunomodulatory therapy in patients with relapsed and refractory multiple myeloma. Ann. Hematol. 90, 1161–1166 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sondergaard, T. E. et al. A phase II clinical trial does not show that high dose simvastatin has beneficial effect on markers of bone tunrover in multiple myeloma. Hematol. Oncol. 27, 17–22 (2009).

    Article  CAS  PubMed  Google Scholar 

  177. Shachaf, C. M. et al. Inhibition of HMGcoA reductase by atorvastatin prevents and reverses MYC-induced lymphomagenesis. Blood 110, 2674–2684 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Hamilton, R. J. et al. Statin medication use and the risk of biochemical recurrence after radical prostatectomy: results from the Shared Equal Access Regional Cancer Hospital (SEARCH) Database. Cancer 116, 3389–3398 (2010).

    Article  CAS  PubMed  Google Scholar 

  179. Harshman, L. C. et al. Statin use at the time of initiation of androgen deprivation therapy and time to progression in patients with hormone-sensitive prostate cancer. JAMA Oncol. 1, 495–504 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Demierre, M. F., Higgins, P. D., Gruber, S. B., Hawk, E. & Lippman, S. M. Statins and cancer prevention. Nat. Rev. Cancer 5, 930–942 (2005).

    Article  CAS  PubMed  Google Scholar 

  181. Ho, Y. K., Smith, R. G., Brown, M. S. & Goldstein, J. L. Low-density lipoprotein (LDL) receptor activity in human acute myelogenous leukemia cells. Blood 52, 1099–1114 (1978).

    CAS  PubMed  Google Scholar 

  182. Yue, S. et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness. Cell Metab. 19, 393–406 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Guillaumond, F. et al. Cholesterol uptake disruption, in association with chemotherapy, is a promising combined metabolic therapy for pancreatic adenocarcinoma. Proc. Natl Acad. Sci. USA 112, 2473–2478 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hirsch, H. A. et al. A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell 17, 348–361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Pandyra, A. A. et al. Genome-wide RNAi analysis reveals that simultaneous inhibition of specific mevalonate pathway genes potentiates tumor cell death. Oncotarget. 6, 26909–26921 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Nazarian, R. et al. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468, 973–977 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Spagnolo, F., Ghiorzo, P. & Queirolo, P. Overcoming resistance to BRAF inhibition in BRAF-mutated metastatic melanoma. Oncotarget 5, 10206–10221 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Tuerdi, G. et al. Synergistic effect of combined treatment with gamma-tocotrienol and statin on human malignant mesothelioma cells. Cancer Lett. 339, 116–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  189. Krycer, J. R., Phan, L. & Brown, A. J. A key regulator of cholesterol homoeostasis, SREBP-2, can be targeted in prostate cancer cells with natural products. Biochem. J. 446, 191–201 (2012). This study highlights the potential of inhibiting SREBP2 as an anticancer therapeutic.

    Article  CAS  PubMed  Google Scholar 

  190. Kamisuki, S. et al. A small molecule that blocks fat synthesis by inhibiting the activation of SREBP. Chem. Biol. 16, 882–892 (2009).

    Article  CAS  PubMed  Google Scholar 

  191. Li, X., Chen, Y. T., Hu, P. & Huang, W. C. Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling. Mol. Cancer Ther. 13, 855–866 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Li, X., Wu, J. B., Chung, L. W. & Huang, W. C. Anti-cancer efficacy of SREBP inhibitor, alone or in combination with docetaxel, in prostate cancer harboring p53 mutations. Oncotarget 6, 41018–41032 (2015).

    PubMed  PubMed Central  Google Scholar 

  193. Goldstein, J. L. & Brown, M. S. A century of cholesterol and coronaries: from plaques to genes to statins. Cell 161, 161–172 (2015). A retrospective of the work that uncovered and helped us to understand the role of cholesterol in disease.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Saad, F. et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J. Natl Cancer Inst. 94, 1458–1468 (2002).

    Article  CAS  PubMed  Google Scholar 

  195. Aft, R. et al. Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial. Lancet Oncol. 11, 421–428 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Morgan, G. J. et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 376, 1989–1999 (2010).

    Article  CAS  PubMed  Google Scholar 

  197. Harousseau, J. L. et al. A randomized phase 3 study of tipifarnib compared with best supportive care, including hydroxyurea, in the treatment of newly diagnosed acute myeloid leukemia in patients 70 years or older. Blood 114, 1166–1173 (2009).

    Article  CAS  PubMed  Google Scholar 

  198. Sparano, J. A. et al. Phase II trial of tipifarnib plus neoadjuvant doxorubicin-cyclophosphamide in patients with clinical stage IIB-IIIC breast cancer. Clin. Cancer Res. 15, 2942–2948 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Tang, J. J. et al. Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab. 13, 44–56 (2011).

    Article  CAS  PubMed  Google Scholar 

  200. Guan, M. et al. Nelfinavir induces liposarcoma apoptosis through inhibition of regulated intramembrane proteolysis of SREBP-1 and ATF6. Clin. Cancer. Res. 17, 1796–1806 (2011).

    Article  CAS  PubMed  Google Scholar 

  201. Brunner, T. B. et al. Phase I trial of the human immunodeficiency virus protease inhibitor nelfinavir and chemoradiation for locally advanced pancreatic cancer. J. Clin. Oncol. 26, 2699–2706 (2008).

    Article  CAS  PubMed  Google Scholar 

  202. Rengan, R. et al. A phase I trial of the HIV protease inhibitor nelfinavir with concurrent chemoradiotherapy for unresectable stage IIIA/IIIB non-small cell lung cancer: a report of toxicities and clinical response. J. Thorac. Oncol. 7, 709–715 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank J. van Leeuwen and W. B. Tu for helping to prepare this Review. The authors also thank other current and former members of the Penn laboratory for their helpful comments, including A. Pandyra, E. Chamberlain, J. De Melo, D. Dingar, A. Hickman, M. Kalkat, C. Lourenco, D. Resetca and A. Tamachi. The authors also acknowledge the many important contributions by their colleagues that could not be cited here owing to space and reference constraints. The funding agencies that enable the authors' research include the Ontario Institute for Cancer Research through funding provided by the Province of Ontario, the Canadian Institute for Health Research, Prostate Cancer Canada, the Department of Defense Breast Cancer Research Program, the Princess Margaret Cancer Foundation Hold'em for Life Prostate Cancer Research Fund, and the Terry Fox Foundation Canada. L.Z.P. holds the Canada Research Chair in Molecular Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Z. Penn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Acetyl-CoA

An essential metabolite that is used to drive many cellular processes, including the tricarboxylic acid (TCA) cycle, fatty acid and sterol biosynthesis, and acetylation of histones.

SREBP cleavage-activating protein

(SCAP). Essential for sterol regulatory element-binding protein (SREBP) endoplasmic reticulum (ER)-to-Golgi translocation. SCAP contains a sterol-sensing domain and undergoes a conformational change when levels of ER membrane sterols are low. This change causes a dissociation of the SCAP–SREBP complex from insulin-induced genes (INSIGs).

Insulin-induced genes

(INSIGs). INSIG1 and INSIG2 interact with SREBP cleavage-activating protein (SCAP) under sterol-rich conditions. They prevent sterol regulatory element-binding protein (SREBP) activation by retaining the SCAP–SREBP complex in the endoplasmic reticulum (ER). They also promote the sterol-regulated degradation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR).

Site-1 protease and site-2 protease

(S1P and S2P). Two proteases that cleave the sterol regulatory element-binding proteins (SREBPs), in the Golgi. S1P cleaves at the luminal loop of the SREBPs, whereas S2P is a hydrophobic protein that cleaves the SREBPs at a transmembrane residue.

Sterol regulatory elements

(SREs). Motifs found in the promoters of genes that are transcribed in response to sterol deprivation. SREs are necessary for the transcription of mevalonate (MVA) pathway genes by the sterol regulatory element-binding proteins (SREBPs).

Lipid rafts

Membrane domains that contain high concentrations of cholesterol, saturated fatty acids and sphingolipids. They are tightly packed and form the liquid ordered phase of membranes. One key role is to enable protein complexes to be pre-organized for efficient signal transduction.

γδ T cells

T cells with a T cell receptor that contains a γ- and a δ-chain instead of the more common α- and β-chains. They are known to recognize lipid antigens, are independent of major histocompatibility complex (MHC) class I presentation and are currently being investigated for their anticancer potential.

Isoprenylation

The attachment of a hydrophobic farnesol or geranygeraniol to the carboxyl terminus of proteins that contain a CAAX motif, which anchors the proteins to lipid membranes. Geranylgeraniol can also be attached to non-CAAX motif-containing proteins.

Quinone

A cyclic organic compound that contains two C=O groups. The quinone coenzyme Q is derived from the essential amino acid tyrosine.

C-Cell adenoma

C-Cells (also known as parafollicular cells) are found in the thyroid and produce the hormone calcitonin. Tumours originating from the C-cells include medullary thyroid cancer, and mutations in the RET proto-oncogene are often found in patients.

Aromatase inhibitors

Inhibitors of oestrogen production and a common treatment option for patients with oestrogen receptor-positive breast cancer.

Ki67 index

The fraction of Ki67-positive tumour cells as determined using immunohistochemistry. The expression of Ki67 is associated with cell proliferation.

Dipyridamole

A clinically approved drug used to prevent platelet aggregation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mullen, P., Yu, R., Longo, J. et al. The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer 16, 718–731 (2016). https://doi.org/10.1038/nrc.2016.76

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2016.76

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer