Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Drugging the 'undruggable' cancer targets

Abstract

The term 'undruggable' was coined to describe proteins that could not be targeted pharmacologically. However, progress is being made to 'drug' many of these targets, and therefore more appropriate terms might be 'difficult to drug' or 'yet to be drugged'. Many desirable targets in cancer fall into this category, including the RAS and MYC oncogenes, and pharmacologically targeting these intractable proteins is now a key challenge in cancer research that requires innovation and the development of new technologies. In this Viewpoint article, we asked four scientists working in this field for their opinions on the most crucial advances, as well as the challenges and what the future holds for this important area of research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Whitfield, J. R., Beaulieu, M. E. & Soucek, L. Strategies to inhibit myc and their clinical applicability. Front. Cell Dev. Biol. 5, 10 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. McCormick, F. KRAS as a therapeutic target. Clin. Cancer Res. 21, 1797–1801 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. DeVita, V. T. Jr & Rosenberg, S. A. Two hundred years of cancer research. N. Engl. J. Med. 366, 2207–2214 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    CAS  PubMed  Google Scholar 

  6. Baud, V. & Karin, M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat. Rev. Drug Discov. 8, 33–40 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cox, A. D., Fesik, S. W., Kimmelman, A. C., Luo, J. & Der, C. J. Drugging the undruggable RAS: mission possible? Nat. Rev. Drug Discov. 13, 828–851 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Vigil, D., Cherfils, J., Rossman, K. L. & Der, C. J. Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy? Nat. Rev. Cancer 10, 842–857 (2012).

    Google Scholar 

  10. Stephen, A. G., Esposito, D., Bagni, R. K. & McCormick, F. Dragging Ras back in the ring. Cancer Cell 25, 272–281 (2014).

    CAS  PubMed  Google Scholar 

  11. Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras (G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Patricelli, M. P. et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 6, 316–329 (2016).

    CAS  PubMed  Google Scholar 

  13. Lito, P., Solomon, M., Li, L.-S., Hansen, R. & Rosen, N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science 351, 604–608 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Otto, T. et al. Stabilization of N-Myc is a critical function of Aurora A in human neuroblastoma. Cancer Cell 15, 67–78 (2009).

    CAS  PubMed  Google Scholar 

  15. Gustafson, W. C. et al. Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26, 414–427 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Richards, M. W. et al. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc. Natl Acad. Sci. USA 113, 13726–13731 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Antonarakis, E. S. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N. Engl. J. Med. 371, 1028–1038 (2014).

    PubMed  PubMed Central  Google Scholar 

  19. Lazo, J. S. & Sharlow, E. R. Drugging undruggable molecular cancer targets. Annu. Rev. Pharmacol. Toxicol. 56, 23–40 (2016).

    CAS  PubMed  Google Scholar 

  20. Verdine, G. L. & Walensky, L. D. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin. Cancer Res. 13, 7264–7270 (2007).

    CAS  PubMed  Google Scholar 

  21. Makley, L. N. & Gestwicki, J. E. Expanding the number of 'druggable' targets: non-enzymes and protein-protein interactions. Chem. Biol. Drug Des. 81, 22–32 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Hsieh, A. L. & Dang, C. V. MYC, metabolic synthetic lethality, and cancer. Recent Results Cancer Res. 207, 73–91 (2016).

    CAS  PubMed  Google Scholar 

  23. Soucek, L. et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 27, 504–513 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Massarelli, E. et al. KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin. Cancer Res. 13, 2890–2896 (2007).

    CAS  PubMed  Google Scholar 

  25. Weinstein, I. B. & Joe, A. K. Mechanisms of disease: oncogene addiction—a rationale for molecular targeting in cancer therapy. Nat. Clin. Pract. Oncol. 3, 448–457 (2006).

    CAS  PubMed  Google Scholar 

  26. Evan, G. Taking a back door to target Myc. Science 335, 293–294 (2012).

    CAS  PubMed  Google Scholar 

  27. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Mertz, J. A. et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc. Natl Acad. Sci. USA 108, 16669–16674 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Farrell, A. S. & Sears, R. C. MYC degradation. Cold Spring Harb. Perspect. Med. 4, a014365 (2014).

    PubMed  PubMed Central  Google Scholar 

  30. Fletcher, S. & Prochownik, E. V. Small-molecule inhibitors of the Myc oncoprotein. Biochim. Biophys. Acta 1849, 525–543 (2015).

    CAS  PubMed  Google Scholar 

  31. Neklesa, T. K., Winkler, J. D. & Crews, C. M. Targeted protein degradation by PROTACs. Pharmacol. Ther. (2017).

  32. Heller, G. T., Sormanni, P. & Vendruscolo, M. Targeting disordered proteins with small molecules using entropy. Trends Biochem. Sci. 40, 491–496 (2015).

    CAS  PubMed  Google Scholar 

  33. Hammoudeh, D. I., Follis, A. V., Prochownik, E. V. & Metallo, S. J. Multiple independent binding sites for small-molecule inhibitors on the oncoprotein c-Myc. J. Am. Chem. Soc. 131, 7390–7401 (2009).

    CAS  PubMed  Google Scholar 

  34. Barber-Rotenberg, J. S. et al. Single enantiomer of YK-4-279 demonstrates specificity in targeting the oncogene EWS–FLI1. Oncotarget 3, 172–182 (2012).

    PubMed  PubMed Central  Google Scholar 

  35. Welsch, M. E. et al. Multivalent small-molecule pan-RAS inhibitors. Cell 168, 878–889 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Shimizu, T. et al. The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin. Cancer Res. 18, 2316–2325 (2012).

    CAS  PubMed  Google Scholar 

  37. Athuluri-Divakar, S. K. et al. A small molecule RAS-mimetic disrupts RAS association with effector proteins to block signaling. Cell 165, 643–655 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lai, A. C. & Crews, C. M. Induced protein degradation: an emerging drug discovery paradigm. Nat. Rev. Drug Discov. 16, 101–114 (2017).

    CAS  PubMed  Google Scholar 

  40. Frye, S. V. The art of the chemical probe. Nat. Chem. Biol. 6, 159–161 (2010).

    CAS  PubMed  Google Scholar 

  41. Deng, J. How to unleash mitochondrial apoptotic blockades to kill cancers? Acta Pharm. Sin. B 7, 18–26 (2017).

    PubMed  Google Scholar 

  42. Kotschy, A. et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538, 477–482 (2016).

    PubMed  Google Scholar 

  43. Young, S. W., Stenzel, M. & Yang, J. L. Nanoparticle-siRNA: a potential cancer therapy? Crit. Rev. Oncol. Hematol. 98, 159–169 (2016).

    PubMed  Google Scholar 

  44. Zhang, C. et al. Antisense oligonucleotides: target validation and development of systemically delivered therapeutic nanoparticles. Methods Mol. Biol. 361, 163–185 (2007).

    CAS  PubMed  Google Scholar 

  45. Shen, M., Schmitt, S., Buac, D. & Dou, Q. P. Targeting the ubiquitin–proteasome system for cancer therapy. Expert Opin. Ther. Targets 17, 1091–1108 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fosgerau, K. & Hoffmann, T. Peptide therapeutics: current status and future directions. Drug Discov. Today 20, 122–128 (2015).

    CAS  PubMed  Google Scholar 

  47. Kapoor, A. et al. Yap1 activation enables bypass of oncogenic Kras addiction in pancreatic cancer. Cell 158, 185–697 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Viale, A. et al. Oncogene ablation-resistant pancreatic cancer cells depend on mitochondrial function. Nature 514, 628–632 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Engelke, C. G. & Chinnaiyan, A. aBETting therapeutic resistance by Wnt signaling. Cell Res. 25, 1187–1188 (2015).

    PubMed  PubMed Central  Google Scholar 

  50. Belchis, D. A. et al. Heterogeneity of resistance mutations detectable by next generation sequencing in TKI-treated lung adenocarcinoma. Oncotarget 7, 45237–45248 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Martin, S. D., Coukos, G., Holt, R. A. & Nelson, B. H. Targeting the undruggable: immunotherapy meets personalized oncology in the genomic era. Ann. Oncol. 26, 2367–2374 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Matyskiela, M. E. et al. A novel cereblon modulator recruits GSPT1 to the CRL4CRBN ubiquitin ligase. Nature 535, 252–257 (2016).

    CAS  PubMed  Google Scholar 

  53. Ottis, P. & Crews, C. M. Proteolysis-targeting chimeras: induced protein degradation as a therapeutic strategy. ACS Chem. Biol. 12, 892–898 (2017).

    CAS  PubMed  Google Scholar 

  54. Serafimova, I. M. et al. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles. Nat. Chem. Biol. 8, 471–476 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Oksenberg, D. et al. GBT440 increases haemoglobin oxygen affinity, reduces sickling and prolongs RBC half-life in a murine model of sickle cell disease. Br. J. Haematol. 175, 151–153 (2016).

    Google Scholar 

  56. Soucek, L. et al. Modelling Myc inhibition as a cancer therapy. Nature 455, 679–683 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.M.S. would like to thank J. Taunton for pointing out the example of GBT440. L.S. acknowledges funding from the European Research Council (CoG Grant #617473), the Instituto de Salud Carlos III (FIS Grant #PI13/01705 and #PI16/01224), the BBVA Foundation and the FERO Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi V. Dang, E. Premkumar Reddy, Kevan M. Shokat or Laura Soucek.

Ethics declarations

Competing interests

C.V.D. declares no competing interests. E.P.R. is the scientific founder, Board member and paid consultant of Onconova Therapeutics, Inc., which is developing rigosertib for cancer therapy. K.M.S. is an inventor on patents related to KRAS-G12C-targeting drugs licensed to Araxes Pharma. He is also a shareholder and consultant to Araxes Pharma. L.S. is founder and shareholder of Peptomyc S.L.

Related links

Related links

FURTHER INFORMATION

In the Pipeline

RAS Initiative

Cancer Moonshot blue ribbon Panel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, C., Reddy, E., Shokat, K. et al. Drugging the 'undruggable' cancer targets. Nat Rev Cancer 17, 502–508 (2017). https://doi.org/10.1038/nrc.2017.36

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2017.36

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer