Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The molecular landscape of head and neck cancer

A Publisher Correction to this article was published on 12 September 2018

Key Points

  • There are major molecular differences between human papillomavirus (HPV)-positive and HPV-negative oropharyngeal cancers, and these underlie the major clinical differences. HPV-positive oropharyngeal cancers are associated with a favourable prognosis.

  • The lack of HPV-positive mucosal precursor changes has hampered investigation of the natural history of HPV-driven oropharyngeal cancers. Current data suggest that the productive infections take place in the oral cavity and transforming infections in a subgroup of epithelial cells mostly found in the tonsils, which are characterized by specific molecular markers.

  • Assessing HPV status in oropharyngeal cancer with the use of immunostaining for the surrogate marker p16INK4A is appropriate for staging, but additional HPV DNA or RNA testing will be required for treatment de-escalation.

  • Detailed molecular characterization of head and neck cancer revealed that the major cancer genes causing the disease are tumour suppressor genes.

  • Many head and neck cancer genes are involved in cell proliferation and cell cycle control, WNT–β-catenin signalling, cell survival and epigenetic regulation.

  • Head and neck cancer is an unexpectedly heterogeneous disease with at least three genetically defined major subgroups: HPV-positive tumours; HPV-negative tumours with many copy number changes; and copy number alteration-silent, HPV-negative tumours.

  • Besides the classification into three distinct genetic subgroups, both HPV-positive and HPV-negative tumours can be subclassified on the basis of genomic profiling.

  • The many genetic changes in head and neck cancer present an opportunity for immunotherapy with immune checkpoint inhibitors.

Abstract

Head and neck squamous cell carcinomas (HNSCCs) arise in the mucosal linings of the upper aerodigestive tract and are unexpectedly heterogeneous in nature. Classical risk factors are smoking and excessive alcohol consumption, and in recent years, the role of human papillomavirus (HPV) has emerged, particularly in oropharyngeal tumours. HPV-induced oropharyngeal tumours are considered a separate disease entity, which recently has manifested in an adapted prognostic staging system while the results of de-intensified treatment trials are awaited. Carcinogenesis caused by HPV in the mucosal linings of the upper aerodigestive tract remains an enigma, but with some recent observations, a model can be proposed. In 2015, The Cancer Genome Atlas (TCGA) consortium published a comprehensive molecular catalogue on HNSCC. Frequent mutations of novel druggable oncogenes were not demonstrated, but the existence of a subgroup of genetically distinct HPV-negative head and neck tumours with favourable prognoses was confirmed. Tumours can be further subclassified based on genomic profiling. However, the amount of molecular data is currently overwhelming and requires detailed biological interpretation. It also became apparent that HNSCC is a disease characterized by frequent mutations that create neoantigens, indicating that immunotherapies might be effective. In 2016, the first results of immunotherapy trials with immune checkpoint inhibitors were published, and these may be considered as a paradigm shift in head and neck oncology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell cycle regulation in head and neck squamous cell carcinoma.
Figure 2: WNT signalling and the putative role of AJUBA, FAT1 and NOTCH1.
Figure 3: Concept of human papillomavirus-induced carcinogenesis in the head and neck region.
Figure 4: Genomic carcinogenesis models of head and neck squamous cell carcinoma.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 136, E359–E386 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Castellsague, X. et al. HPV involvement in head and neck cancers: comprehensive assessment of biomarkers in 3680 patients. J. Natl. Cancer Inst. 108, djv403 (2016).

    PubMed  Google Scholar 

  3. Lawrence, M. S. et al. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517, 576–582 (2015). A report with what is currently the largest genomics data set of head and neck cancer.

    CAS  Google Scholar 

  4. Seiwert, T. Y. et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin. Cancer Res. 21, 632–641 (2015).

    CAS  PubMed  Google Scholar 

  5. Braakhuis, B. J. M. et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J. Natl Cancer Inst. 96, 998–1006 (2004). This study presents for the first time the major molecular difference between HPV+ve and HPV−ve HNSCC.

    CAS  PubMed  Google Scholar 

  6. Smeets, S. J. et al. Genome-wide DNA copy number alterations in head and neck squamous cell carcinomas with or without oncogene-expressing human papillomavirus. Oncogene 25, 2558–2564 (2006).

    CAS  PubMed  Google Scholar 

  7. Slebos, R. J. C. et al. Gene expression differences associated with human papillomavirus status in head and neck squamous cell carcinoma. Clin. Cancer Res. 12, 701–709 (2006).

    CAS  PubMed  Google Scholar 

  8. Wichmann, G. et al. The role of HPV RNA transcription, immune response-related gene expression and disruptive TP53 mutations in diagnostic and prognostic profiling of head and neck cancer. Int. J. Cancer 137, 2846–2857 (2015).

    CAS  PubMed  Google Scholar 

  9. Ang, K. K. et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N. Engl. J. Med. 363, 24–35 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rietbergen, M. M. et al. Human papillomavirus detection and comorbidity: critical issues in selection of patients with oropharyngeal cancer for treatment de-escalation trials. Ann. Oncol. 24, 2740–2745 (2013).

    CAS  PubMed  Google Scholar 

  11. O'Sullivan, B. et al. Development and validation of a staging system for HPV-related oropharyngeal cancer by the International Collaboration on Oropharyngeal cancer Network for Staging (ICON-S): a multicentre cohort study. Lancet Oncol. 17, 440–451 (2016). On the basis of this paper, the TNM staging was adapted for HPV+ve oropharyngeal cancer in the eighth edition.

    PubMed  Google Scholar 

  12. Brierley, J. D. G., Gospodarowicz, M. K. & Wittekind, C. TNM Classification of Malignant Tumours 8th edn (Wiley-Blackwell,2016).

  13. Belbin, T. J. et al. Molecular classification of head and neck squamous cell carcinoma using cDNA microarrays. Cancer Res. 62, 1184–1190 (2002).

    CAS  PubMed  Google Scholar 

  14. Chung, C. H. et al. Molecular classification of head and neck squamous cell carcinomas using patterns of gene expression. Cancer Cell 5, 489–500 (2004). This is the first report to describe head and neck cancer classifications based on gene expression profiles.

    CAS  PubMed  Google Scholar 

  15. Walter, V. et al. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLOS ONE 8, e56823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Keck, M. K. et al. Integrative analysis of head and neck cancer identifies two biologically distinct HPV and three non-HPV subtypes. Clin. Cancer Res. 21, 870–881 (2015).

    CAS  PubMed  Google Scholar 

  17. Schnitt, S. J. Classification and prognosis of invasive breast cancer: from morphology to molecular taxonomy. Modern Pathol. 23, S60–S64 (2010).

    Google Scholar 

  18. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    CAS  PubMed  Google Scholar 

  19. Leemans, C. R., Braakhuis, B. J. M. & Brakenhoff, R. H. The molecular biology of head and neck cancer. Nat. Rev. Cancer 11, 9–22 (2011).

    CAS  PubMed  Google Scholar 

  20. Vogelstein, B. et al. Cancer genome landscapes. Science 339, 1546–1558 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brouns, E. R. E. A. et al. Malignant transformation of oral leukoplakia in a well-defined cohort of 144 patients. Oral Dis. 20, e19–e24 (2014).

    PubMed  Google Scholar 

  22. Petti, S. Pooled estimate of world leukoplakia prevalence: a systematic review. Oral Oncol. 39, 770–780 (2003).

    PubMed  Google Scholar 

  23. Napier, S. S. & Speight, P. M. Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J. Oral Pathol Med. 37, 1–10 (2008).

    PubMed  Google Scholar 

  24. van der Waal, I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol. 45, 317–323 (2009).

    PubMed  Google Scholar 

  25. Slaughter, D. P., Southwick, H. W. & Smejkal, W. Field cancerization in oral stratified squamous epithelium — clinical Implications of multicentric origin. Cancer 6, 963–968 (1953).

    CAS  PubMed  Google Scholar 

  26. Califano, J. et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 56, 2488–2492 (1996). This study presents the first genetic progression model of head and neck cancer.

    CAS  PubMed  Google Scholar 

  27. Tabor, M. P. et al. Genetically altered fields as origin of locally recurrent head and neck cancer: a retrospective study. Clin. Cancer Res. 10, 3607–3613 (2004).

    CAS  PubMed  Google Scholar 

  28. Tabor, M. P. et al. Multiple head and neck tumors frequently originate from a single preneoplastic lesion. Am. J. Pathol. 161, 1051–1060 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Tabor, M. P. et al. Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin. Cancer Res. 7, 1523–1532 (2001).

    CAS  PubMed  Google Scholar 

  30. Zhang, L. W. et al. Loss of Heterozygosity (LOH) profiles-validated risk predictors for progression to oral cancer. Cancer Prev. Res. 5, 1081–1089 (2012).

    Google Scholar 

  31. Graveland, A. P. et al. Loss of heterozygosity at 9p and p53 immunopositivity in surgical margins predict local relapse in head and neck squamous cell carcinoma. Int. J. Cancer 128, 1852–1859 (2011).

    CAS  PubMed  Google Scholar 

  32. Campbell, J. D. et al. The case for a pre-cancer genome atlas (PCGA). Cancer Prev. Res 9, 119–124 (2016).

    CAS  Google Scholar 

  33. Tomasetti, C., Li, L. & Vogelstein, B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355, 1330–1334 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tomasetti, C. & Vogelstein, B. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. van Houten, V. M. M. et al. Mutated p53 as a molecular marker for the diagnosis of head and neck cancer. J. Pathol. 198, 476–486 (2002).

    CAS  PubMed  Google Scholar 

  36. Lim, X. H. et al. Interfollicular epidermal stem cells self-renew via autocrine Wnt signaling. Science 342, 1226–1230 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Beck, T. N. & Golemis, E. A. Genomic insights into head and neck cancer. Cancers Head Neck 1, 1 (2016).

    PubMed  PubMed Central  Google Scholar 

  38. Hayes, D. N., Van Waes, C. & Seiwert, T. Y. Genetic landscape of human papillomavirus-associated head and neck cancer and comparison to tobacco-related tumors. J. Clin Oncol. 33, 3227–3236 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Toledo, L., Neelsen, K. J. & Lukas, J. Replication catastrophe: when a checkpoint fails because of exhaustion. Mol. Cell 66, 735–749 (2017).

    CAS  PubMed  Google Scholar 

  40. Levine, A. J. & Oren, M. The first 30 years of p53: growing ever more complex. Nat. Rev. Cancer 9, 749–758 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Normanno, N. et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366, 2–16 (2006).

    CAS  PubMed  Google Scholar 

  42. Lin, S. Y. et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat. Cell Biol. 3, 802–808 (2001).

    CAS  PubMed  Google Scholar 

  43. Moser, R. et al. Functional kinomics identifies candidate therapeutic targets in head and neck cancer. Clin. Cancer Res. 20, 4274–4288 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. van Roy, F. & Berx, G. The cell-cell adhesion molecule E-cadherin. Cell. Mol. Life Sci. 65, 3756–3788 (2008).

    CAS  PubMed  Google Scholar 

  45. Tanoue, T. & Takeichi, M. Mammalian Fat1 cadherin regulates actin dynamics & cell-cell contact. J. Cell Biol. 165, 517–528 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Morris, L. G. T. et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant WNT activation. Nat. Genet. 45, 253–261 (2013). This is an interesting study on the role of the FAT1 tumour suppressor gene in cancer, including head and neck cancer, and its functional association with WNT signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Clevers, H., Loh, K. M. & Nusse, R. An integral program for tissue renewal and regeneration: WNT signaling and stem cell control. Science 346, 54 (2014).

    CAS  Google Scholar 

  48. Schimizzi, G. V. & Longmore, G. D. Ajuba proteins. Curr. Biol. 25, R445–R446 (2015).

    CAS  PubMed  Google Scholar 

  49. Hirota, T. et al. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114, 585–598 (2003).

    CAS  PubMed  Google Scholar 

  50. Sun, G. P. & Irvine, K. D. Ajuba family proteins link JNK to Hippo signaling. Sci. Signal. 6, ra81 (2013).

    PubMed  Google Scholar 

  51. Marie, H. et al. The LIM protein Ajuba is recruited to cadherin-dependent cell junctions through an association with alpha-catenin. J. Biol. Chem. 278, 1220–1228 (2003).

    CAS  PubMed  Google Scholar 

  52. Kanungo, J., Pratt, S. J., Marie, H. & Longmore, G. D. Ajuba, a cytosolic LIM protein, shuttles into the nucleus and affects embryonal cell proliferation and fate decisions. Mol. Biol. Cell 11, 3299–3313 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Haraguchi, K. et al. Ajuba negatively regulates the Wnt signaling pathway by promoting GSK-3 beta-mediated phosphorylation of beta-catenin. Oncogene 27, 274–284 (2008).

    CAS  PubMed  Google Scholar 

  54. Kopan, R. & Ilagan, M. X. G. The canonical NOTCH signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ntziachristos, P., Lim, J. S., Sage, J. & Aifantis, I. From fly wings to targeted cancer therapies: a centennial for NOTCH signaling. Cancer Cell 25, 318–334 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Stransky, N. et al. The mutational landscape of head and neck squamous cell carcinoma. Science 333, 1157–1160 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Agrawal, N. et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333, 1154–1157 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun, W. Y. et al. Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 74, 1091–1104 (2014).

    CAS  PubMed  Google Scholar 

  59. Nicolas, M. et al. Notch1 functions as a tumor suppressor in mouse skin. Nat. Genet. 33, 416–421 (2003).

    CAS  PubMed  Google Scholar 

  60. Kwon, C. et al. Notch post-translationally regulates beta-catenin protein in stem and progenitor cells. Nat. Cell Biol. 13, 1244–1251 (2011). This paper describes a very intriguing new role for NOTCH1, highlighting the interaction of NOTCH1 with WNT signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Borggrefe, T. et al. The Notch intracellular domain integrates signals from Wnt, Hedgehog, TGF beta/BMP and hypoxia pathways. BBA Mol. Cell Res. 1863, 303–313 (2016).

    CAS  Google Scholar 

  62. Perri, F. et al. Epigenetic control of gene expression: potential implications for cancer treatment. Crit. Rev. Oncol. Hemat. 111, 166–172 (2017).

    CAS  Google Scholar 

  63. Ng, S. B. et al. Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat. Genet. 42, 790–793 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Kurotaki, N. et al. Haploinsufficiency of NSD1 causes Sotos syndrome. Nat. Genet. 30, 365–366 (2002).

    CAS  PubMed  Google Scholar 

  65. Choufani, S. et al. NSD1 mutations generate a genome-wide DNA methylation signature. Nat. Commun. 6, 10207 (2015).

    CAS  PubMed  Google Scholar 

  66. Lin, S. B. & Gregory, R. I. MicroRNA biogenesis pathways in cancer. Nat. Rev. Cancer 15, 321–333 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. de Boer, D. V. et al. Targeting PLK1 as a novel chemopreventive approach to eradicate prenoplastic mucosal changes in the head and neck. Oncotarget 8, 97928–97940 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Smeets, S. J., Braakhuis, B. J. M., Ylstra, B., Leemans, C. R. & Brakenhoff, R. H. TP53 mutations are associated with a particular pattern of genomic imbalances in head and neck squamous cell carcinoma. Cell. Oncol. 29, 160–160 (2007). This study reports the existence of a novel, genetically defined subgroup of head and neck cancers.

    Google Scholar 

  69. Gross, A. M. et al. Multi-tiered genomic analysis of head and neck cancer ties TP53 mutation to 3p loss. Nat. Genet. 46, 939–943 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. De Cecco, L. et al. Head and neck cancer subtypes with biological and clinical relevance: meta-analysis of gene-expression data. Oncotarget 6, 9627–9642 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Wilkerson, M. D. et al. Lung squamous cell carcinoma mRNA expression subtypes are reproducible, clinically Important, and correspond to normal cell types. Clin. Cancer Res. 16, 4864–4875 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Romero, R. et al. Keap1 loss promotes Kras-driven lung cancer and results in dependence on glutaminolysis. Nat. Med. 23, 1362–1368 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bar-Peled, L. et al. Chemical proteomics identifies druggable vulnerabilities in a genetically defined cancer. Cell 171, 696–709 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gillison, M. L. et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J. Natl Cancer Inst. 92, 709–720 (2000). This is the very first report on the favourable prognosis of HPV-induced head and neck cancers.

    CAS  PubMed  Google Scholar 

  75. Begum, S., Cao, D. F., Gillison, M., Zahurak, M. & Westra, W. H. Tissue distribution of human papillomavirus 16 DNA integration in patients with tonsillar carcinoma. Clin. Cancer Res. 11, 5694–5699 (2005).

    CAS  PubMed  Google Scholar 

  76. Kim, S. H. et al. HPV integration begins in the tonsillar crypt and leads to the alteration of p16, EGFR and c-myc during tumor formation. Int. J. Cancer 120, 1418–1425 (2007).

    CAS  PubMed  Google Scholar 

  77. D'Souza, G. et al. Case-control study of human papillomavirus and oropharyngeal cancer. N. Engl. J. Med. 356, 1944–1956 (2007).

  78. Kreimer, A. R., Clifford, G. M., Boyle, P. & Franceschi, S. Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidem. Biomar. 14, 467–475 (2005).

    CAS  Google Scholar 

  79. Ndiaye, C. et al. HPV DNA, E6/E7 mRNA, and p16(INK4a) detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol. 15, 1319–1331 (2014).

    CAS  PubMed  Google Scholar 

  80. Steenbergen, R. D. M., Snijders, P. J. F., Heideman, D. A. M. & Meijer, C. J. L. M. Clinical implications of (epi)genetic changes in HPV-induced cervical precancerous lesions. Nat. Rev. Cancer 14, 395–405 (2014).

    CAS  PubMed  Google Scholar 

  81. Rampias, T., Sasaki, C., Weinberger, P. & Psyrri, A. E6 and E7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J. Natl Cancer Inst. 101, 412–423 (2009).

    CAS  PubMed  Google Scholar 

  82. Chen, R. W. et al. Presence of DNA of human papillomavirus 16 but no other types in tumor-free tonsillar tissue. J. Clin. Microbiol. 43, 1408–1410 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Palmer, E. et al. Human papillomavirus infection is rare in nonmalignant tonsil tissue in the UK: Implications for tonsil cancer precursor lesions. Int. J. Cancer 135, 2437–2443 (2014).

    CAS  PubMed  Google Scholar 

  84. Combes, J. D. et al. Prevalence of human papillomavirus in tonsil brushings and gargles in cancer-free patients: The SPLIT study. Oral Oncol. 66, 52–57 (2017).

    PubMed  Google Scholar 

  85. Kreimer, A. R. et al. Oral human papillomavirus in healthy individuals: a systematic review of the literature. Sex. Transm. Dis. 37, 386–391 (2010).

    PubMed  Google Scholar 

  86. Gillison, M. L. et al. Prevalence of oral HPV infection in the United States, 2009–2010. JAMA 307, 693–703 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Herfs, M. et al. A discrete population of squamocolumnar junction cells implicated in the pathogenesis of cervical cancer. Proc. Natl Acad. Sci. USA 109, 10516–10521 (2012). This is an intriguing study that describes a subgroup of epithelial cells in the cervix characterized by specific molecular markers and that seem susceptible to HPV-mediated carcinogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Woods, R. S. R. et al. Cytokeratin 7 in oropharyngeal squamous cell carcinoma: a junctional biomarker for human papillomavirus-related tumors. Cancer Epidem. Biomar. 26, 702–710 (2017).

    CAS  Google Scholar 

  89. Kang, S. Y. et al. Characterization of epithelial progenitors in normal human palatine tonsils and their HPV16 E6/E7-induced perturbation. Stem Cell Rep. 5, 1210–1225 (2015).

    CAS  Google Scholar 

  90. Mirabello, L. et al. HPV16 sublineage associations with histology-specific cancer risk using HPV whole-genome sequences in 3200 women. J. Natl. Cancer Inst. 108, djw100 (2016).

    PubMed  PubMed Central  Google Scholar 

  91. Mirabello, L. et al. HPV16 E7 Genetic conservation is critical to carcinogenesis. Cell 170, 1164–1174 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chung, C. H. et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann. Oncol. 26, 1216–1223 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Smeets, S. J. et al. Immortalization of oral keratinocytes by functional inactivation of the p53 and pRb pathways. Int. J. Cancer 128, 1596–1605 (2011).

    CAS  PubMed  Google Scholar 

  94. Bader, A. G., Kang, S. Y., Zhao, L. & Vogt, P. K. Oncogenic PI3K deregulates transcription and translation. Nat. Rev. Cancer 5, 921–929 (2005).

    CAS  PubMed  Google Scholar 

  95. Sewell, A. et al. Reverse-phase protein array profiling of oropharyngeal cancer and significance of PIK3CA mutations in HPV-associated head and neck cancer. Clin. Cancer Res. 20, 2300–2311 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Henken, F. E. et al. PIK3CA-mediated PI3-kinase signalling is essential for HPV-induced transformation in vitro. Mol. Cancer 10, 71 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Du, L. et al. Overexpression of PIK3CA in murine head and neck epithelium drives tumor invasion and metastasis through PDK1 and enhanced TGF beta signaling. Oncogene 35, 4641–4652 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Woenckhaus, J. et al. Genomic gain of PIK3CA and increased expression of p110alpha are associated with progression of dysplasia into invasive squamous cell carcinoma. J. Pathol. 198, 335–342 (2002).

    CAS  PubMed  Google Scholar 

  99. Verlaat, W. et al. Somatic mutation in PIK3CA is a late event in cervical carcinogenesis. J. Pathol. Clin. Res. 1, 207–211 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45, 970–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Zhang, Y. X. et al. Subtypes of HPV-positive head and neck cancers are associated with HPV characteristics, copy number alterations, PIK3CA mutation, and pathway signatures. Clin. Cancer Res. 22, 4735–4745 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    CAS  PubMed  Google Scholar 

  103. Prince, M. E. et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc. Natl Acad. Sci. USA 104, 973–978 (2007). This is the first report on the existence of specific cell populations in head and neck cancer with stem cell characteristics.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Martens- de Kemp, S. R. et al. CD98 marks a subpopulation of head and neck squamous cell carcinoma cells with stem cell properties. Stem Cell Res. 10, 477–488 (2013).

    Google Scholar 

  105. Rietbergen, M. M. et al. Cancer stem cell enrichment marker CD98: a prognostic factor for survival in patients with human papillomavirus-positive oropharyngeal cancer. Eur. J. Cancer 50, 765–773 (2014).

    CAS  PubMed  Google Scholar 

  106. de Jong, M. C. et al. CD44 expression predicts local recurrence after radiotherapy in larynx cancer. Clin. Cancer Res. 16, 5329–5338 (2010).

    CAS  PubMed  Google Scholar 

  107. Mroz, E. A. & Rocco, J. W. MATH, a novel measure of intratumor genetic heterogeneity, is high in poor-outcome classes of head and neck squamous cell carcinoma. Oral Oncol. 49, 211–215 (2013).

    CAS  PubMed  Google Scholar 

  108. Mroz, E. A. et al. High intratumor genetic heterogeneity is related to worse outcome in patients with head and neck squamous cell carcinoma. Cancer 119, 3034–3042 (2013).

    PubMed  Google Scholar 

  109. Mroz, E. A., Tward, A. M., Hammon, R. J., Ren, Y. & Rocco, J. W. Intra-tumor genetic heterogeneity and mortality in head and neck cancer: analysis of data from The Cancer Genome Atlas. PLOS Med. 10, 1371 (2015).

    Google Scholar 

  110. Puram, S. V. et al. Single-cell transcriptomic analysis of primary and metastatic tumor ecosystems in head and neck cancer. Cell 171, 1611–1624 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Biddle, A. et al. Cancer stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Res. 71, 5317–5326 (2011).

    CAS  PubMed  Google Scholar 

  112. Bettegowda, C. et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci. Transl Med. 6, 224ra24 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Wang, Y. X. et al. Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci. Transl Med. 7, 293ra104 (2015).

    PubMed  PubMed Central  Google Scholar 

  114. Principe, S. et al. Tumor-derived exosomes and microvesicles in head and neck cancer: implications for tumor biology and biomarker discovery. Proteomics 13, 1608–1623 (2013).

    CAS  PubMed  Google Scholar 

  115. Braakhuis, B. J. M. et al. Expression signature in peripheral blood cells for molecular diagnosis of head and neck squamous cell carcinoma. Oral Dis. 19, 452–455 (2013).

    CAS  PubMed  Google Scholar 

  116. Best, M. G. et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell 28, 666–676 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Best, M. G. et al. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell 32, 238–252 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Ferris, R. L. Immunology and immunotherapy of head and neck cancer. J. Clin. Oncol. 33, 3293–3305 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ferris, R. L. et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 375, 1856–1867 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Seiwert, T. Y. et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 17, 956–965 (2016). References 119 and 120 are the first reports to demonstrate the clinical efficacy of immune checkpoint inhibitors for head and neck cancer.

    CAS  PubMed  Google Scholar 

  121. Topalian, S. L., Taube, J. M., Anders, R. A. & Pardoll, D. M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer 16, 275–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Budach, W. et al. Induction chemotherapy followed by concurrent radio-chemotherapy versus concurrent radio-chemotherapy alone as treatment of locally advanced squamous cell carcinoma of the head and neck (HNSCC): a meta-analysis of randomized trials. Radiother. Oncol. 118, 238–243 (2016).

    PubMed  Google Scholar 

  123. Bonner, J. A. et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 354, 567–578 (2006).

    CAS  PubMed  Google Scholar 

  124. Schilling, C. et al. Sentinel European Node Trial (SENT): 3-year results of sentinel node biopsy in oral cancer. Eur. J. Cancer 51, 2777–2784 (2015).

    PubMed  Google Scholar 

  125. Gan, S. J. et al. Incidence and pattern of second primary malignancies in patients with index oropharyngeal cancers versus index nonoropharyngeal head and neck cancers. Cancer 119, 2593–2601 (2013).

    PubMed  Google Scholar 

  126. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  127. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013). This article excellently demonstrates the challenges with identifying passenger and driver mutations in cancer, their underlying origins and bioinformatic solutions.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Parsons, D. W. et al. An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807–1812 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Boscolo-Rizzo, P., Pawlita, M. & Holzinger, D. From HPV-positive towards HPV-driven oropharyngeal squamous cell carcinomas. Cancer Treat. Rev. 42, 24–29 (2016).

    PubMed  Google Scholar 

  130. Rischin, D. Oropharyngeal cancer, human papillomavirus, and clinical trials. J. Clin Oncol. 28, 1–3 (2010).

    CAS  PubMed  Google Scholar 

  131. van Houten, V. M. M. et al. Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int. J. Cancer 93, 232–235 (2001).

    CAS  PubMed  Google Scholar 

  132. Smeets, S. J. et al. A novel algorithm for reliable detection of human papillomavirus in paraffin embedded head and neck cancer specimen. Int. J. Cancer 121, 2465–2472 (2007). This study demonstrates simple solutions for the false-positive findings with HPV DNA testing and for the use of test algorithms with surrogate markers to assess HPV involvement in head and neck cancer.

    CAS  PubMed  Google Scholar 

  133. Holzinger, D. et al. Viral RNA patterns and high viral load reliably define oropharynx carcinomas with active HPV16 involvement. Cancer Res. 72, 4993–5003 (2012).

    CAS  PubMed  Google Scholar 

  134. McLaughlin-Drubin, M. E., Crum, C. P. & Mungera, K. Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B histone demethylase expression and causes epigenetic reprogramming. Proc. Natl Acad. Sci. USA 108, 2130–2135 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Rietbergen, M. M. et al. Molecular characterization of p16-immunopositive but HPV DNA- negative oropharyngeal carcinomas. Int. J. Cancer 134, 2366–2372 (2014).

    CAS  PubMed  Google Scholar 

  136. Prigge, E. S., Arbyn, M., Doeberitz, M. V. & Reuschenbach, M. Diagnostic accuracy of p16(INK4a) immunohistochemistry in oropharyngeal squamous cell carcinomas: A systematic review and meta-analysis. Int. J. Cancer 140, 1186–1198 (2017).

    CAS  PubMed  Google Scholar 

  137. Rietbergen, M. M. et al. Increasing prevalence rates of HPV attributable oropharyngeal squamous cell carcinomas in the Netherlands as assessed by a validated test algorithm. Int. J. Cancer 132, 1565–1571 (2013).

    CAS  PubMed  Google Scholar 

  138. Holzinger, D. et al. Sensitivity and specificity of antibodies against HPV16 E6 and other early proteins for the detection of HPV16-driven oropharyngeal squamous cell carcinoma. Int. J. Cancer 140, 2748–2757 (2017).

    CAS  PubMed  Google Scholar 

  139. Kreimer, A. R. et al. Evaluation of human papillomavirus antibodies and risk of subsequent head and neck cancer. J. Clin. Oncol. 31, 2708–2714 (2013).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors' research summarized here is supported by Cancer Center Amsterdam, the Dutch Cancer Society, the European Commission, The Netherlands Organization for Scientific Research (NWO), The Fanconi Anaemia Research Fund and The German Fanconi Support Group.

Author information

Authors and Affiliations

Authors

Contributions

C.R.L, P.J.F.S and R.H.B contributed to the design, concepts and writing of the manuscript.

Corresponding authors

Correspondence to C. René Leemans or Ruud H. Brakenhoff.

Ethics declarations

Competing interests

R.H.B has a longstanding collaboration with and receives support from InteRNA Technologies BV and received support from Agilent Technologies Netherlands BV and AbbVie. C.R.L has a collaboration with and receives support from Genmab and InteRNA Technologies BV. C.R.L. also participates in the advisory boards of Merck and MSD. P.J.F.S. is a minority stakeholder and the Chief Science Officer of Self-Screen BV, a spin-off company of VU University Medical Center. P.J.F.S. has been on the Speaker Bureau of Roche Diagnostics, Gen-Probe, Abbott, Qiagen and Seegene and has been a consultant for Crucell BV.

Related links

PowerPoint slides

Glossary

Leukoplakia

A macroscopic white change in the mucosal linings of the upper aerodigestive tract, which is defined by the World Health Organization (WHO) as “a white plaque of questionable risk having excluded (other) known diseases or disorders that carry no increased risk for cancer”.

Erythroplakia

A macroscopic red change in the mucosal linings of the upper aerodigestive tract, which is defined by the World Health Organization (WHO) as “a fiery red patch that cannot be characterized either clinically or pathologically as any other definable lesion”.

Kabuki syndrome

A dominant autosomal disease caused by inactivating germline mutations in the histone-lysine N-methyltransferase 2D (KMT2D) gene and characterized by anatomical abnormalities and mental retardation.

Sotos syndrome

A neurological autosomal dominant disorder caused by the loss of one active copy of the nuclear receptor-binding SET domain-containing protein 1 (NSD1) gene and characterized by an unusual face with a large skull, acromegalic features and mental retardation.

MicroRNAs

(miRNAs). Small, 22–24 nucleotide single-stranded RNAs that bind to the 3′ untranslated region of genes and cause degradation of the transcript or a stop in translation.

HPV attributable fraction

The percentage of head and neck squamous cell carcinomas in any defined subsite that are assumingly caused by human papillomavirus (HPV).

Productive HPV infections

A type of human papillomavirus (HPV) infection that supports the normal viral life cycle and leads to viral progeny.

Transforming HPV infections

A type of human papillomavirus (HPV) infection that does not result in virus production but may instead cause malignant transformation of the infected cell.

Apolipoprotein B mRNA-editing enzyme catalytic subunit

(APOBEC). A class of cytidine deaminases that function in innate immunity as well as in RNA editing. Viral infections may induce high expression of these genes, causing specific mutation patterns that have also been identified in human papillomavirus (HPV)-induced head and neck cancers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leemans, C., Snijders, P. & Brakenhoff, R. The molecular landscape of head and neck cancer. Nat Rev Cancer 18, 269–282 (2018). https://doi.org/10.1038/nrc.2018.11

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc.2018.11

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer