Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Carboxypeptidase G2-based gene-directed enzyme–prodrug therapy: a new weapon in the GDEPT armoury

Abstract

Gene-directed enzyme–prodrug therapy (GDEPT) aims to improve the therapeutic ratio (benefit versus toxic side-effects) of cancer chemotherapy. A gene encoding a 'suicide' enzyme is introduced into the tumour to convert a subsequently administered non-toxic prodrug into an active drug selectively in the tumour, but not in normal tissues. Significant effects can now be achieved in vitro and in targeted experimental models, and GDEPT therapies are entering the clinic. Our group has developed a GDEPT system that uses the bacterial enzyme carboxypeptidase G2 to convert nitrogen mustard prodrugs into potent DNA crosslinking agents, and a clinical trial of this system is pending.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of gene-directed enzyme–prodrug therapy (GDEPT).
Figure 2: Structure of nitrogen mustard prodrugs.
Figure 3: Activation of self-immolative pro-drugs.
Figure 4: Efficacy of carboxypeptidase G2 gene-directed enzyme–prodrug therapy (GDEPT) in hepatocellular xenografts.
Figure 5: Gene-directed enzyme–prodrug therapy (GDEPT) in action.

Similar content being viewed by others

References

  1. Carter, S. K., Bakowski, M. T. & Hellman, K. Chemotherapy of Cancer, (John Wiley & Sons New York, 1986).

    Google Scholar 

  2. Calabresi, P. & Chabner, B. A. Chemotherapy of neoplastic diseases. in Goodman and Gilman's The Pharmacological Basis of Therapeutics (eds Hardman, J. G. & Linbird, L. E.) 1225–1287 (McGraw-Hill, New York, 1995).

    Google Scholar 

  3. Donnenberg, V. S. & Donnenberg, A. Multiple drug resistance in cancer revisited: the cancer stem cell hypothesis. J. Clin. Pharm. 45, 872–877 (2005).

    Article  CAS  Google Scholar 

  4. Coleman, M. P. et al. Cancer survival trends in England and Wales 1971–1995: deprivation and NHS region (The Stationary Office, London, 1999).

    Google Scholar 

  5. Jemal, A. et al. 2006 cancer statistics. CA Cancer J. Clin. 56, 106–130 (2006).

    Article  PubMed  Google Scholar 

  6. Huber, B. E., Richards, C. A. & Krenitsky, T. A. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy. Proc. Natl Acad. Sci. USA 88, 8039–8043 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moolten, F. L. Tumor chemosensitivity conferred by inserted herpes thymidine kinase genes: paradigm for a prospective cancer control strategy. Cancer Res. 46, 5276–5281 (1986).

    CAS  PubMed  Google Scholar 

  8. Napier, M. et al. Antibody-directed enzyme prodrug therapy: efficacy and mechanism of action in colorectal carcinoma. Clin. Cancer Res. 6, 765–772 (2000).

    CAS  PubMed  Google Scholar 

  9. Ring, C. J. A. Cytolytic viruses as potential anti-cancer agents. J. Gen. Virol. 83, 491–502 (2002).

    Article  PubMed  Google Scholar 

  10. Green, N. K. & Hale, S. J. Viral approaches to cancer gene therapy. Expert Opin. Ther. Pat. 12, 369–378 (2002).

    Article  Google Scholar 

  11. Jain, K. K. Use of Bacteria as anticancer agents. Expert Opin. Biol. Ther. 1, 291–300 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Hajri, A. et al. Combined suicide gene therapy for pancreatic peritoneal carcinomatosis using BGTC liposomes. Cancer Gene Ther. 11, 16–27 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Pawelek, J. M., Low, K. B. & Bermudes, D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537–4544 (1997).

    CAS  PubMed  Google Scholar 

  14. Zhao, M. et al. Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc. Natl Acad. Sci. USA 102, 755–760 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Soghomonyan, S. A. et al. Positron emission tomography (PET) inaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther. 1–8 (2004).

  16. King, I. et al. Tumor-targeted Salmonella expressing cytosine deaminase as an anticancer agent. Human Gene Ther. 13, 1225–1233 (2002).

    Article  CAS  Google Scholar 

  17. Malmgren, R. A. & Flanigan, C. C. Localization of the vegetative form of Clostridium tetani in mouse tumors following intravenous spore administration. Cancer Res. 15, 473–478 (1955).

    CAS  PubMed  Google Scholar 

  18. Mose, J. R. & Mose, G. Oncolysis by Clostridia. I. Activity of Clostridium (M-55) and other nonpathogenic clostridia against the Ehrlich carcinoma. Cancer Res. 24, 212–216 (1964).

    Google Scholar 

  19. Lemmon, M. J. et al. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther. 4, 791–796 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Fox, M. E. et al. Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther. 3, 173–178 (1996).

    CAS  PubMed  Google Scholar 

  21. Liu, S.-C., Minton, N. P., Giaccia, A. J. & Brown, J. M. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther. 9, 291–296 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Theys, J. et al. Repeated cycles of Clostridium-directed enzyme prodrug therapy result in sustained antitumour effects in vivo. Br. J. Cancer 95, 1212–1219 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yazawa, K., Fujimori, M., Amano, J., Kano, Y. & Taniguchi, S. Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther. 7, 269–274 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Yazawa, K. et al. Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors. Breast Cancer Res. Treat. 66, 165–170 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Nakamura, T. et al. Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/ pro-drug therapy of hypoxic solid tumors. Biosci. Biotechnol. Biochem. 66, 2362–2366 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Sasaki, T. et al. Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci. 97, 649–657 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Ha, G. Y., Yang, C. H., Kim, H. & Chong, Y. Case of sepsis caused by Bifidobacterium longum. J. Clin. Microbiol. 37, 1227–1228 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Critchley, R. J. et al. Potential, therapeutic applications of recombinant, invasive E. coli. Gene Ther. 11, 1224–1233 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Thomas, C. E. E. & Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nature Rev. Genet. 4, 346–358 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Lin, E. & Nemunaitis, J. Oncolytic viral therapies. Cancer Gene Ther. 11, 643–664 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Heise, C. & Kirn, D. H. Replication-selective adenoviruses as oncolytic agents. J. Clin. Invest. 105, 847–851 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jounaidi, Y., Doloff, J. C. & Waxman, D. J. Conditionally replicating adenoviruses for cancer treatment. Curr. Cancer Drug Targets 7, 285–301 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alemany, R. Cancer selective adenoviruses. Mol. Asp. Med. 28, 42–58 (2007).

    Article  CAS  Google Scholar 

  34. Heise, C. C., Williams, A., Olesch, J. & Kirn, D. Efficacy of a replication-competent adenovirus (ONYX-015) following intratumoral injection: intratumoral spread and distribution effects. Cancer Gene Ther. 6, 499–504 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Vollmer, C. M. et al. p53 selective and nonselective replication of an E1B-deleted adenovirus in hepatocellular carcinoma. Cancer Res. 59, 4369–4374 (1999).

    CAS  PubMed  Google Scholar 

  36. Hasenburg, A. et al. Adenovirus -mediated thymidine kinase gene therapy for recurrent ovarian cancer: expression of coxsackie-adenovirus receptor and integrins αvβ3 and αvβ5. J. Soc. Gynecol. Invest. 9, 174–180 (2002).

    Article  CAS  Google Scholar 

  37. Green, N. K. & Seymour, L. W. Adenoviral vectors:systemic delivery and tumor targeting. Cancer Gene Ther. 9, 1036–1042 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Djeha, A. H. et al. Combined adenovirus-mediated nitroreductase gene delivery and CB1954 treatment: A well-tolerated therapy for established solid tumors. Molecular Ther. 3, 233–240 (2001).

    Article  CAS  Google Scholar 

  39. Lanson N. A. Jr, Friedlander, P. A., Schwartzenberger, P., Kolls, J. K. & Wang, G. Replication of an adenoviral vector controlled by the human telomerase reverse transcriptase promoter causes tumor-selective tumor lysis. Cancer Res. 63, 7936–7941 (2003).

    CAS  PubMed  Google Scholar 

  40. Irving, J. et al. Conditionally replicative adenovirus driven by the human telomerase promoter provides broad-spectrum antitumor activity without liver toxicity. Cancer Gene Ther. 11, 174–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Bisland, A. F. et al. Selective ablation of human cancer cells by telomerase-specific adenoviral suicide gene therapy vectors expressing bacterial nitroreductase. Oncogene 22, 370–380 (2003).

    Article  CAS  Google Scholar 

  42. Liu, Y., Ye, T., Maynard, J., Akbulut, H. & Deisseroth, A. Engineering conditionally replication-competent adenoviral vectors carrying the cytosine deaminase gene increases the infectivity and therapeutic effect for breast cancer gene therapy Cancer Gene Ther. 13, 346–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Liu, Y. & Deisseroth, A. Tumor vascular targeting therapy with viral vectors. Blood 107, 3027–3033 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Fukuhara, H. et al. Improvement of transduction efficiency of recombinant adenovirus vector conjugated with cationic liposome for human oral squamous cell carcinoma cell lines. Oral Oncol. 39, 601–609 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Toth, K. et al. An oncolytic adenovirus vector combining enhanced cell-to-cell spreading mediated by the ADP cytolytic protein with selective replication in cancer cells with deregulated Wnt signalling. Cancer Res. 64, 3638–3644 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Barton, K. N. et al. Second-generation replication-competent oncolytic adenovirus armed with improved suicide genes and ADP gene demonstrates greater efficacy without increased toxicity. Mol. Ther. 13, 347–356 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Freytag, S. O. et al. Replication-competent adenovirus-mediated suicide gene therapy with radiation in a preclinical model of pancreatic cancer. Mol. Ther. 15, 1600–1606 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Marshall, E. Gene therapy death prompts review of adenovirus vector. Science 286, 2244–2245 (1999).

    Article  CAS  PubMed  Google Scholar 

  49. Knipe, D. M. & Howley, P. M. (eds). Fields' Virology (Lippincott Williams & Wilkins, Philidelphia, 2007).

    Google Scholar 

  50. Warrington, K. H., Teschendorf, C., Cao, L., Muzyczka, N. & Siemann, D. W. Developing VDEPT for DT-diaphorase (NQO1) using an AAV vector plasmid. Int. J. Rad. Oncol. Biol. Phys. 42, 909–912 (1998).

    Article  CAS  Google Scholar 

  51. Schoensiegel, F. et al. MIA (melanoma inhibitory activity) promoter mediated tissue-specific suicide gene therapy of malignant melanoma. Cancer Gene Ther. 11, 408–418 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Vermeij, J. et al. Transduction of ovarian cancer cells: a recombinant adeno-associated viral vector compared to an adenoviral vector. Br. J. Cancer 85, 1592–1599 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Veldwijk, M. R. et al. Suicide gene therapy of sarcoma cell lines using recombinant adeno-associated virus 2 vectors. Cancer Gene Ther. 11, 577–584 (2004).

    Article  CAS  PubMed  Google Scholar 

  54. Kanazawa, T. et al. Suicide gene therapy using AAV-HSVtk/ganciclovir in combination with irradiation results in regression of human head and neck cancer xenografts in nude mice Gene Ther. 10, 51–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  55. Solly, S. K. et al. Replicative retroviral vectors for cancer gene therapy. Cancer Gene Ther. 10, 30–39 (2003).

    Article  CAS  PubMed  Google Scholar 

  56. Fernandez, M., Porosnicu, M., Markovic, D. & Barber, G. N. Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J. Virol. 76, 895–904 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Porosnicu, M., Mian, A. & Barber, G. N. The oncolytic effect of vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/ uracil phosphoribosyltransferase suicide gene. Cancer Res. 63, 8366–8376 (2003).

    CAS  PubMed  Google Scholar 

  58. Kanayama, H. et al. Usefulness of repeated direct intratumoral gene transfer using hemagglutinating virus of Japan-liposome method for cytosine deaminase suicide gene therapy. Cancer Res. 61, 14–18 (2001).

    Google Scholar 

  59. Aghi, M. & Martuza, R. L. Oncolytic viral therapies — the clinical experience. Oncogene 24, 7802–7816 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Shikova, E. Retroviral vectors for gene transfer: development, properties and application. Exp. Pathol. Parasitol 6/12, 40–47 (2003).

    Google Scholar 

  61. Floeth, F. W. et al. Local inflammation and devascularization — in vivo mechanisms of the 'bystander effect' in VPC-mediated HSV-tk/GCV gene therapy for human malignant glioma. Cancer Gene Ther 8, 843–851 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Rainov, N. G. A phase III clinical evaluation of herpes simplex type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum. Gene Ther. 11, 2389–2401 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Papanastassiou, V. et al. The potential for efficacy of the modified (ICP 34.5) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther. 9, 398–406 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Tyminski, E. et al. Brain tumor oncolysis with replication-conditional herpes simplex virus type 1 expressing the prodrug-activating genes, CYP2B1 and secreted human intestinal carboxylesterase, in combination with cyclophosphamide and irinotecan. Cancer Res. 65, 6850–6857 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Yoon, S. S., Carroll, N. M., Chiocca, E. A. & Tanabe, K. Cancer gene therapy using a replication competent herpes simplex virus type I vector. Annal. Surg. 228, 366–374 (1998).

    Article  CAS  Google Scholar 

  66. Yoon, S. S. et al. An oncolytic herpes simplex type I selectively destroys diffuse liver metastases from colon carcinoma. FASEB J. 14, 301–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Nakamura, H. et al. Multimodality therapy with a replication-conditional Herpes simplex virus 1 mutant that expresses yeast cytosine deaminase for intratumoral conversion of 5-fluorocytosine to 5-fluorouracil. Cancer Res. 61, 5447–5452 (2001).

    CAS  PubMed  Google Scholar 

  68. Guffey, M. B. et al. Engineered herpes simplex virus expressing bacterial cytosine deaminase for experimental therapy of brain tumors. Cancer Gene Ther. 14, 45–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Detta, A., Darland, J., Hanif, I., Brown, S. M. & Cruickshank, G. Proliferative activity and in vitro replication of HSV1716 in human metastatic brain tumours. J. Gene Med. 5, 681–689 (2003).

    Article  PubMed  Google Scholar 

  70. Hofmann, C. et al. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl Acad. Sci. USA 92, 10099–10103 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Stanbridge, L. J., Dussupt, V. & Maitland, N. J. Baculoviruses as vectors for gene therapy against human prostate cancer. J. Biomed. Bacteriol. 2003, 79–91 (2003).

    Google Scholar 

  72. Hung, C.-F. et al. Vaccinia virus preferentially infects and controls human and murine ovarian tumors in mice. Gene Ther. 14, 20–29 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Gnant, M. F. X., Puhlmann, M., Alexander. Jr, H. R. & Bartlett, D. L. Systemic administration of a recombinant vaccinia virus expressing the cytosine deaminase gene and subsequent treatment with 5-fluorocytosine leads to tumor-specific gene expression and prolongation of survival in mice. Cancer Res. 59, 3396–3403 (1999).

    CAS  PubMed  Google Scholar 

  74. Peplinski, G. R. et al. In vivo murine tumor gene delivery and expression by systemic recombinant vaccinia virus encoding interleukin-1β. Cancer J. Sci. Am. 2, 21–27 (1996).

    CAS  PubMed  Google Scholar 

  75. Zeh, H. J. & Bartlett, D. L. Development of a replication-selective, oncolytic poxvirus for the treatment of human cancers. Cancer Gene Ther. 9, 1001–1012 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Yang, S. et al. A new recombinant vaccinia with targeted deletion of three viral genes: its safety and efficacy as an oncolytic virus. Gene Therapy 14, 638–647 (2007).

    Article  PubMed  CAS  Google Scholar 

  77. Portsmouth, D., Hlavatya, J. & Renner, M. Suicide genes for cancer therapy Mol. Asp. Med. 28, 4–41 (2007).

    Article  CAS  Google Scholar 

  78. Friedlos, F., Denny, W. A., Palmer, B. D. & Springer, C. J. Mustard prodrugs for activation by Escherichia coli nitroreductase in gene-directed prodrug therapy. J. Med. Chem. 40, 1270–1275 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Spooner, R. A. et al. Appropriate subcellular localisation of prodrug-activating enzymes has important consequences for suicide gene therapy. Int. J. Cancer 93, 123–130 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Knox, R. J. & Connors, T. A. Prodrugs in cancer chemotherapy. Pathol. Oncol. Res. 3, 309–324 (1997).

    Article  CAS  PubMed  Google Scholar 

  81. Race, P. et al. Kinetic and structural characterisation of Escherichia coli nitroreductase mutants showing improved efficacy for the prodrug substrate CB1954. J. Mol. Biol. 368, 481–492 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Niculescu-Duvaz, I. & Springer, C. J. Antibody-directed enzyme prodrug therapy (ADEPT): a targeting strategy in cancer chemotherapy. Current Med. Chem. 2, 687–706 (1995).

    CAS  Google Scholar 

  83. Niculescu-Duvaz, I., Friedlos, F., Niculescu-Duvaz, D., Davies, L. C. & Springer, C. J. Prodrugs for antibody- and gene- directed enzyme prodrug therapies (ADEPT and GDEPT). Anti-Cancer Drug Design 14, 517–538 (1999).

    CAS  PubMed  Google Scholar 

  84. Senter, P. D. & Springer, C. J. Selective activation of anticancer prodrugs by monoclonal antibody-enzyme conjugates. Adv. Drug Del. Rev. 53, 247–264 (2001).

    Article  CAS  Google Scholar 

  85. Marais, R., Spooner, R. A., Light, Y., Martin, J. & Springer, C. J. Gene-directed enzyme prodrug therapy with a mustard prodrug/carboxypeptidase G2 combination. Cancer Res. 56, 4735–4742 (1996).

    CAS  PubMed  Google Scholar 

  86. Marais, R. et al. A cell surface tethered enzyme improves efficiency in gene-directed enzyme prodrug therapy. Nature Biotechnol. 15, 1373–1377 (1997).

    Article  CAS  Google Scholar 

  87. Stribbling, S. M. et al. Regressions of established breast carcinoma xenografts by carboxypeptidase G2 suicide gene therapy and the prodrug CMDA are due to a bystander effect. Human Gene Ther. 11, 285–292 (2000).

    Article  CAS  Google Scholar 

  88. Cowen, R. L. et al. Adenovirus vector-mediated delivery of the prodrug-converting enzyme carboxypeptidase G2 in a secreted or GPI-anchored form: High-level expression of this active conditional cytotoxic enzyme at the plasma membrane. Cancer Gene Ther. 9, 897–907 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Blakey, D. C. et al. ZD2767, an improved system for antibody-directed enzyme prodrug therapy that results in tumor regressions in colorectal tumor xenografts. Cancer Res. 56, 3287–3292 (1996).

    CAS  PubMed  Google Scholar 

  90. Niculescu-Duvaz, I. et al. Self Immolative Anthracycline Prodrugs for Suicide Gene Therapy. J. Med. Chem. 42, 2485–2489 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Friedlos, F. et al. Three new prodrugs for suicide gene therapy using carboxypeptidase G2 elicit bystander efficacy in two xenograft models. Cancer Res. 62, 1724–1729 (2002).

    CAS  PubMed  Google Scholar 

  92. Niculescu-Duvas, D. et al. Self-immolative nitrogen mustards prodrugs cleavable by carboxypeptidase G2 (CPG2) showing large cytotoxicity differentials in GDEPT. J. Med. Chem. 46, 1690–1705 (2003).

    Article  CAS  Google Scholar 

  93. Niculescu-Duvas, I. et al. Significant differences in biological parameters between prodrugs cleavable by carboxypeptidase G2 that generate 3, 5-difluoro-phenol and -aniline nitrogen mustards in gene-directed enzyme prodrug therapy. J. Med. Chem. 47, 2651–2658 (2004).

    Article  CAS  Google Scholar 

  94. Davies, L. C. et al. Novel fluorinated prodrugs for activation by carboxypeptidase G2 showing good in vivo antitumor activity in gene-directed enzyme prodrug therapy. J. Med. Chem. 48, 5331–5328 (2005).

    Article  CAS  Google Scholar 

  95. Niculescu-Duvas, D. et al. Self -immolative nitrogen mustard prodrugs for suicide gene therapy. J. Med. Chem. 41, 5297–5309 (1998).

    Article  Google Scholar 

  96. Schepelmann, S. et al. Systemic gene-directed enzyme prodrug therapy of hepatocellular carcinoma using a targeted adenovirus armed with carboxypeptidase G2. Cancer Res. 65, 5003–5008 (2005).

    Article  CAS  PubMed  Google Scholar 

  97. Schepelmann, S. et al. Suicide gene therapy of human colon carcinoma xenografts using an armed oncolytic adenovirus expressing carboxypeptidase G2. Cancer Res. 67, 4949–4955 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Bernt, K. M. et al. Enzyme activated prodrug therapy enhances tumor-specific replication of adenovirus vectors. Cancer Res. 62, 6089–6098 (2002).

    CAS  PubMed  Google Scholar 

  99. Schaak, J., Schedl, P. & Shenk, T. Topoisomerase I and II cleavage of Adenovirus DNA in vivo: both topoisomerase activities appear to be required for adenovirus DNA replication. J. Virol. 64, 78–85 (1990).

    Google Scholar 

  100. McCart, J. et al. Complex interactions between the replicating oncolytic effect and the enzyme/prodrug effect of vaccinia mediated tumor regression. Gene Ther. 7, 1217–1223 (2000).

    Article  CAS  PubMed  Google Scholar 

  101. McCullough, J. L., Chabner, B. A. & Bertino, J. R. Purification and properties of carboxypeptidase G1. J. Biol. Chem. 246, 7207–7213 (1971).

    CAS  PubMed  Google Scholar 

  102. Lindner, H. A. et al. Essential roles of zinc ligation and enzyme dimerisation for catalysis in the aminoacylase-1/M20 family. J. Biol. Chem. 278, 44496–44504 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Chabner, B. A., Johns, D. G. & Bertino, J. R. Enzymatic cleavage of methotrexate provides a method for prevention of drug toxicity. Nature 239, 395–397 (1972).

    Article  CAS  PubMed  Google Scholar 

  104. Gu, J., Andreeff, M., Roth, J. A. & Fang, B. hTERT promoter induces tumor-specific Bax gene expression and cell killing in syngenic mouse tumor model and prevents systemic toxicity. Gene Ther. 9, 30–37 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Barker, S. D. et al. Combined transcriptional and transductional targeting improves the specificity and efficacy of adenoviral gene delivery to ovarian carcinoma. Gene Ther. 10, 1198–1204 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Magnusson, M. K. et al. Adenovirus 5 vector genetically re-targeted by an Affibody molecule with specificity for tumor antigen HER2/neu. Cancer Gene Ther. 14, 468–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Hiraoka, K., Kimura, T., Logg, C. R. & Kasahara, N. Tumor-selective gene expression in a hepatic metastasis model after locoregional delivery of a replication-competent retrovirus vector. Clin. Cancer Res. 12, 7108–7116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chang, E. et al. Targeting vaccinia to solid tumors with local hyperthermia. Hum. Gene Ther. 16, 435–444 (2005).

    Article  CAS  PubMed  Google Scholar 

  109. Nettelbeck, D. M., Jérôme, V. & Müller, R. Gene therapy: Designer promoters for tumour targeting. Trends Genet. 16, 174–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  110. Robson, T. & Hirst, D. G. Transcriptional targeting in cancer gene therapy. J. Biomed. Biotechnol. 2003, 110–137 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Harrington, K. J., Linardkis, E. & Vile, R. G. Transcriptional control: an essential component of cancer gene therapy strategies? Adv. Drug Deliv. Rev. 44, 167–184 (2000).

    Article  CAS  PubMed  Google Scholar 

  112. Brand, K., Loser, P., Arnold, W., Bartels, T. & Strauss, M. Tumor cell-specific transgene expression prevents liver toxicity of the adeno-HSVtk/GCV approach. Gene Ther. 5, 1363–1371 (1998).

    Article  CAS  PubMed  Google Scholar 

  113. Maatta, A. M. et al. Transcriptional targeting of virus-mediated gene transfer by the human hexokinase II promoter. Int. J. Mol. Med. 18, 901–908 (2006).

    CAS  PubMed  Google Scholar 

  114. Mathis, J. M. et al. Cancer-specific targeting of an adenovirus-delivered herpes simplex virus thymidine kinase suicide gene using translational control. J. Gene Med. 8, 1105–1120 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Yu, D. et al. Targeting and killing of prostate cancer cells using lentiviral constructs containing a sequence recognized by translation factor eIF4E and a prostate-specific promoter. Cancer Gene Ther. 13, 32–43 (2006).

    Article  CAS  PubMed  Google Scholar 

  116. Rein, D. T., Breidenbach, M., Hille, S. & Curiel, D. T. Current developments in adenovirus-based cancer gene therapy. Future Oncol. 2, 137–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Immonen, A. et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol. Ther. 10, 967–972 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Alverez, R. D. et al. Adenoviral-mediated suicide gene therapy for ovarian cancer. Molecular Therapy 2, 524–530 (2000).

    Article  CAS  Google Scholar 

  119. Kubo, H. et al. Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven Herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum. Gene Ther. 14, 227–241 (2003).

    Article  CAS  PubMed  Google Scholar 

  120. Nasu, Y. et al. Suicide gene therapy with adenoviral delivery of HSV-tK gene for patients with local recurrence of prostate cancer after hormonal therapy. Mol. Ther. 15, 834–840 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. van der Linden, R. et al. Virus specific immune responses after human neoadjuvant adenovirus-mediated suicide gene therapy for prostate cancer. Eur. Urol. 48, 153–161 (2005).

    Article  CAS  PubMed  Google Scholar 

  122. Freytag, S. O. et al. Phase I trial of replication-competent adenovirus-mediated suicide gene therapy combined with IMRT for prostate cancer. Mol. Ther. 15, 1016–1023 (2007).

    Article  CAS  PubMed  Google Scholar 

  123. Shalev, M. et al. Suicide gene therapy toxicity after multiple and repeat injections in patients with localized prostate cancer. J. Urol. 163, 1747–1750 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Sung, M. W. et al. Intratumoral adenovirus-mediated suicide gene transfer for hepatic metastases from colorectal adenocarcinoma: results of a phase I clinical trial. Mol. Ther. 4, 182–191 (2001).

    Article  CAS  PubMed  Google Scholar 

  125. Freytag, S. O. et al. Phase I study of replication competent adenovirus-mediated double suicide-gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res. 62, 4968–4976 (2002).

    CAS  PubMed  Google Scholar 

  126. Freytag, S. O. et al. Five-year follow-up of trial of replication-competent adenovirus-mediated suicide gene therapy for treatment of prostate cancer. Mol. Ther. 15, 636–642 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Freytag, S. O. et al. Phase I study of replication-competent adenovirus-mediated double-suicide gene therapy in combination with conventional-dose three-dimensional conformal radiation therapy for the treatment of newly diagnosed, intermediate-to-high-risk prostate cancer. Cancer Res. 63, 7497–7506 (2003).

    CAS  PubMed  Google Scholar 

  128. Palmer, D. H. et al. Virus-directed enzyme prodrug therapy: intratumoral administration of a replication-deficient adenovirus encoding nitroreductase to patients with resectable liver cancer. J. Clin. Oncol. 22, 1546–1552 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Braybrooke, J. P. et al. Phase I study of MetXia-P450 gene therapy and oral cyclophosphamide for patients with advanced breast cancer or melanoma. Clin. Cancer Res. 11, 1512–1520 (2005).

    Article  CAS  PubMed  Google Scholar 

  130. Barzon, L. et al. A pilot study of combined suicide/cytokine gene therapy in two patients with end-stage anaplastic thyroid carcinoma. J. Clin. Endocrinol. Metab. 90, 2831–2834 (2004).

    Article  CAS  Google Scholar 

  131. Singh, S., Cummingham, C., Buchanan, A., Jolly, D. J. & Nemunaitis, J. Toxicity assessment of intratumoreal injection of herpes simplex type 1 thymidine kinase gene delivered by retrovirus in patients with refractory cancer. Mol. Ther. 4, 157–160 (2001).

    Article  CAS  PubMed  Google Scholar 

  132. Valéry, C. et al. Long-term survival after gene therapy for a recurrent glioblastoma. Neurology 58, 1109–1112 (2002).

    Article  PubMed  Google Scholar 

  133. Ryan, P. C. et al. Antitumor efficacy and tumor-selective replication with a single intravenous injection of OAS403, an oncolytic adenovirus dependent on two prevalent alterations in human cancer. Cancer Gene Ther. 11, 555–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  134. Parker, W. B. et al. Metabolism and metabolic actions of 6-methylpurine and 2-fluoroadenine in human cells. Biochem. Pharmacol. 55, 1673–1681 (1998).

    Article  CAS  PubMed  Google Scholar 

  135. Slichenmyer, W. J., Rowinsky, E. K., Donehower, R. C. & Kaufmann, S. H. The current status of camptothecin analogues as antitumor agents. J. Natl Cancer Inst. 85, 271–291 (1993).

    Article  CAS  PubMed  Google Scholar 

  136. Springer, C. J. et al. Novel prodrugs which are activated to cytotoxic alkylating agents by carboxypeptidase G2. J. Med. Chem. 33, 677–681 (1990).

    Article  CAS  PubMed  Google Scholar 

  137. Pinedo, H. M. & Peters, G. F. Fluorouracil: biochemistry and pharmacology. J. Clin. Oncol. 6, 1653–1664 (1988).

    Article  CAS  PubMed  Google Scholar 

  138. Peñuelas, I. et al. Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 128, 1787–1795 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thank you to Frank Friedlos for the immunofluorescence experiments. This work is funded by Cancer Research UK (grant numbers C309/A2187 and C309/A8274).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Springer.

Related links

Related links

FURTHER INFORMATION

Caroline Springer's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedley, D., Ogilvie, L. & Springer, C. Carboxypeptidase G2-based gene-directed enzyme–prodrug therapy: a new weapon in the GDEPT armoury. Nat Rev Cancer 7, 870–879 (2007). https://doi.org/10.1038/nrc2247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing