Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Regulatory T-cell inhibition versus depletion: the right choice in cancer immunotherapy

Abstract

Tumour-induced expansion of regulatory T (TReg) cells is an obstacle to successful cancer immunotherapy. The potential benefit of TReg-cell depletion through the interleukin-2 receptor is lost by the concurrent elimination of activated effector lymphocytes and possibly by the de novo induction of TReg-cell replenishment. In theory, the functional inactivation of TReg cells will maintain them at high numbers in tumours and avoid their replenishment from the peripheral lymphocyte pool, which has the capacity to further suppress the effector lymphocyte anti-tumour response.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulatory T cells in the network of immunosuppression.
Figure 2: Repertoire of regulatory T cells before and after CD25+ cell depletion.
Figure 3: Different strategies to neutralize regulatory T cells and their possible outcomes.

Similar content being viewed by others

References

  1. Gershon, R. K., Carter, R. L. & Kondo, K. On concomitant immunity in tumour-bearing hamsters. Nature 213, 674–676 (1967).

    Article  CAS  PubMed  Google Scholar 

  2. Zheng, Y. & Rudensky, A. Y. Foxp3 in control of the regulatory T cell lineage. Nature Immunol. 8, 457–462 (2007).

    Article  CAS  Google Scholar 

  3. Miyara, M. & Sakaguchi, S. Natural regulatory T cells: mechanisms of suppression. Trends Mol. Med. 13, 108–116 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Bluestone, J. A. & Abbas, A. K. Natural versus adaptive regulatory T cells. Nature Rev. Immunol. 3, 253–257 (2003).

    Article  CAS  Google Scholar 

  5. Aschenbrenner, K. et al. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nature Immunol. 8, 351–358 (2007).

    Article  CAS  Google Scholar 

  6. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int. Immunol. 10, 1969–1980 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunol. 3, 135–142 (2002).

    Article  CAS  Google Scholar 

  9. Valzasina, B. et al. Triggering of OX40 (CD134) on CD4+CD25+ T cells blocks their inhibitory activity: a novel regulatory role for OX40 and its comparison with GITR. Blood 105, 2845–2851 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Takeda, I. et al. Distinct roles for the OX40–OX40 ligand interaction in regulatory and nonregulatory T cells. J. Immunol. 172, 3580–3589 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Borsellino, G. et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110, 1225–1232 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Deaglio, S. et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med. 204, 1257–1265 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faria, A. M. & Weiner, H. L. Oral tolerance. Immunol. Rev. 206, 232–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Roncarolo, M. G. et al. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev. 212, 28–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Ghiringhelli, F. et al. Tumor cells convert immature myeloid dendritic cells into TGFβ-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med. 202, 919–929 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, G., Drake, C. G. & Levitsky, H. I. Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107, 628–636 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Valzasina, B., Piconese, S., Guiducci, C. & Colombo, M. P. Tumor-induced expansion of regulatory T cells by conversion of CD4+CD25 lymphocytes is thymus and proliferation independent. Cancer Res. 66, 4488–4495 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Zhou, G. & Levitsky, H. I. Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J. Immunol. 178, 2155–2162 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Hsieh, C. S., Zheng, Y., Liang, Y., Fontenot, J. D. & Rudensky, A. Y. An intersection between the self-reactive regulatory and nonregulatory T cell receptor repertoires. Nature Immunol. 7, 401–410 (2006).

    Article  CAS  Google Scholar 

  20. Hsieh, C. S. et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21, 267–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Nishikawa, H. et al. Role of SEREX-defined immunogenic wild-type cellular molecules in the development of tumor-specific immunity. Proc. Natl Acad. Sci. USA 98, 14571–14576 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lutz, M. B. & Schuler, G. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol. 23, 445–449 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Guiducci, C., Valzasina, B., Dislich, H. & Colombo, M. P. CD40/CD40L interaction regulates CD4+CD25+ T reg homeostasis through dendritic cell-produced IL-2. Eur. J. Immunol. 35, 557–567 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Malek, T. R. & Bayer, A. L. Tolerance, not immunity, crucially depends on IL-2. Nature Rev. Immunol. 4, 665–674 (2004).

    Article  CAS  Google Scholar 

  26. Kim, J. M., Rasmussen, J. P. & Rudensky, A. Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nature Immunol. 8, 191–197 (2007).

    Article  CAS  Google Scholar 

  27. Liang, S. et al. Conversion of CD4+ CD25 cells into CD4+ CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J. Exp. Med. 201, 127–137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kretschmer, K. et al. Inducing and expanding regulatory T cell populations by foreign antigen. Nature Immunol. 6, 1219–1227 (2005).

    Article  CAS  Google Scholar 

  29. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  Google Scholar 

  30. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Benson, M. J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R. J. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yates, S. F. et al. Induction of regulatory T cells and dominant tolerance by dendritic cells incapable of full activation. J. Immunol. 179, 967–976 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Vukmanovic-Stejic, M. et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo. J. Clin. Invest. 116, 2423–2433 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).

    Article  CAS  PubMed  Google Scholar 

  35. Zou, W. Regulatory T cells, tumour immunity and immunotherapy. Nature Rev. Immunol. 6, 295–307 (2006).

    Article  CAS  Google Scholar 

  36. North, R. J. & Bursuker, I. Generation and decay of the immune response to a progressive fibrosarcoma. I. Ly-1+2 suppressor T cells down-regulate the generation of Ly-12+ effector T cells. J. Exp. Med. 159, 1295–1311 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Bursuker, I. & North, R. J. Generation and decay of the immune response to a progressive fibrosarcoma. II. Failure to demonstrate postexcision immunity after the onset of T cell-mediated suppression of immunity. J. Exp. Med. 159, 1312–1321 (1984).

    Article  CAS  PubMed  Google Scholar 

  38. Hiura, T. et al. Both regulatory T cells and antitumor effector T cells are primed in the same draining lymph nodes during tumor progression. J. Immunol. 175, 5058–5066 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Ambrosino, E. et al. Immunosurveillance of Erbb2 carcinogenesis in transgenic mice is concealed by a dominant regulatory T-cell self-tolerance. Cancer Res. 66, 7734–7740 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Betts, G. et al. The impact of regulatory T cells on carcinogen-induced sarcogenesis. Br. J. Cancer 96, 1849–1854 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Clarke, S. L. et al. CD4+CD25+FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE 1, e129 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Liyanage, U. K. et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J. Immunol. 169, 2756–2761 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Sasada, T., Kimura, M., Yoshida, Y., Kanai, M. & Takabayashi, A. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer 98, 1089–1099 (2003).

    Article  PubMed  Google Scholar 

  45. Schaefer, C. et al. Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer. Br. J. Cancer 92, 913–920 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bui, J. D., Uppaluri, R., Hsieh, C. S. & Schreiber, R. D. Comparative analysis of regulatory and effector T cells in progressively growing versus rejecting tumors of similar origins. Cancer Res. 66, 7301–7309 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, V. C. et al. Tumor evasion of the immune system by converting CD4+CD25 T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF−β. J. Immunol. 178, 2883–2892 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Fallarino, F. et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176, 6752–6761 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Curti, A. et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25 into CD25+ T regulatory cells. Blood 109, 2871–2877 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Beyer, M. et al. In vivo peripheral expansion of naive CD4+CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107, 3940–3949 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Stephens, G. L., Andersson, J. & Shevach, E. M. Distinct subsets of FoxP3+ regulatory T cells participate in the control of immune responses. J. Immunol. 178, 6901–6911 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Golgher, D., Jones, E., Powrie, F., Elliott, T. & Gallimore, A. Depletion of CD25+ regulatory cells uncovers immune responses to shared murine tumor rejection antigens. Eur. J. Immunol. 32, 3267–3275 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Jones, E. et al. Depletion of CD25+ regulatory cells results in suppression of melanoma growth and induction of autoreactivity in mice. Cancer Immun. 2, 1 (2002).

    PubMed  Google Scholar 

  54. Onizuka, S. et al. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59, 3128–3133 (1999).

    CAS  PubMed  Google Scholar 

  55. Shimizu, J., Yamazaki, S. & Sakaguchi, S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol. 163, 5211–5218 (1999).

    CAS  PubMed  Google Scholar 

  56. Comes, A. et al. CD25+ regulatory T cell depletion augments immunotherapy of micrometastases by an IL-21-secreting cellular vaccine. J. Immunol. 176, 1750–1758 (2006).

    Article  CAS  PubMed  Google Scholar 

  57. Waldmann, T. A. Daclizumab (anti-Tac, Zenapax) in the treatment of leukemia/lymphoma. Oncogene 26, 3699–3703 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Vlad, G. et al. Anti-CD25 treatment and FOXP3-positive regulatory T cells in heart transplantation. Transpl. Immunol. 18, 13–21 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Barnett, B., Kryczek, I., Cheng, P., Zou, W. & Curiel, T. J. Regulatory T cells in ovarian cancer: biology and therapeutic potential. Am. J. Reprod. Immunol. 54, 369–377 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Dannull, J. et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest. 115, 3623–3633 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Attia, P., Maker, A. V., Haworth, L. R., Rogers-Freezer, L. & Rosenberg, S. A. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother. 28, 582–592 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mahnke, K. et al. Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro. Int. J. Cancer 120, 2723–2733 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Ruddle, J. B., Harper, C. A., Honemann, D., Seymour, J. F. & Prince, H. M. A denileukin diftitox (Ontak) associated retinopathy? Br. J. Ophthalmol. 90, 1070–1071 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Attia, P. et al. Selective elimination of human regulatory T lymphocytes in vitro with the recombinant immunotoxin LMB-2. J. Immunother. 29, 208–214 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. North, R. J. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J. Exp. Med. 155, 1063–1074 (1982).

    Article  CAS  PubMed  Google Scholar 

  66. Ghiringhelli, F. et al. Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol. Immunother. 56, 641–648 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Hermans, I. F., Chong, T. W., Palmowski, M. J., Harris, A. L. & Cerundolo, V. Synergistic effect of metronomic dosing of cyclophosphamide combined with specific antitumor immunotherapy in a murine melanoma model. Cancer Res. 63, 8408–8413 (2003).

    CAS  PubMed  Google Scholar 

  68. Lutsiak, M. E. et al. Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105, 2862–2868 (2005).

    Article  CAS  PubMed  Google Scholar 

  69. Hou, D. Y. et al. Inhibition of indoleamine 2, 3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 67, 792–801 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. Inhibition of indoleamine 2, 3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nature Med. 11, 312–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Gorelik, L. & Flavell, R. A. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nature Med. 7, 1118–1122 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Thomas, D. A. & Massague, J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 8, 369–380 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. Yu, P. et al. Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J. Exp. Med. 201, 779–791 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ko, K. et al. Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+CD25+CD4+ regulatory T cells. J. Exp. Med. 202, 885–891 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ramirez-Montagut, T. et al. Glucocorticoid-induced TNF receptor family related gene activation overcomes tolerance/ignorance to melanoma differentiation antigens and enhances antitumor immunity. J. Immunol. 176, 6434–6442 (2006).

    Article  CAS  PubMed  Google Scholar 

  76. Read, S. et al. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol. 177, 4376–4383 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Sutmuller, R. P. et al. Synergism of cytotoxic T lymphocyte-associated antigen 4 blockade and depletion of CD25+ regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J. Exp. Med. 194, 823–832 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Quezada, S. A., Peggs, K. S., Curran, M. A. & Allison, J. P. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J. Clin. Invest. 116, 1935–1945 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Peng, G. et al. Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 309, 1380–1384 (2005).

    Article  CAS  PubMed  Google Scholar 

  80. Sugamura, K., Ishii, N. & Weinberg, A. D. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nature Rev. Immunol. 4, 420–431 (2004).

    Article  CAS  Google Scholar 

  81. Ohta, A. et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc. Natl Acad. Sci. USA 103, 13132–13137 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario P. Colombo.

Related links

Related links

FURTHER INFORMATION

Mario P. Colombo's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, M., Piconese, S. Regulatory T-cell inhibition versus depletion: the right choice in cancer immunotherapy. Nat Rev Cancer 7, 880–887 (2007). https://doi.org/10.1038/nrc2250

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing