Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Science and Society
  • Published:

Translation of new cancer treatments from pet dogs to humans

Abstract

Naturally occurring cancers in pet dogs and humans share many features, including histological appearance, tumour genetics, molecular targets, biological behaviour and response to conventional therapies. Studying dogs with cancer is likely to provide a valuable perspective that is distinct from that generated by the study of human or rodent cancers alone. The value of this opportunity has been increasingly recognized in the field of cancer research for the identification of cancer-associated genes, the study of environmental risk factors, understanding tumour biology and progression, and, perhaps most importantly, the evaluation and development of novel cancer therapeutics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Provision of veterinary care to animals with cancer.
Figure 2: Homology between dog, human and mouse for recognized cancer genes.
Figure 3: Integrated approach.

References

  1. Hansen, K. & Khanna, C. Spontaneous and genetically engineered animal models; use in preclinical cancer drug development. Eur. J. Cancer 40, 858–880 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Withrow, S. J. & Vail, D. M. Withrow & MacEwen's Small Animal Clinical Oncology 846 (Saunders Elsevier, St. Louis, 2007).

    Google Scholar 

  3. Klein, W. R. et al. Equine sarcoid: BCG immunotherapy compared to cryosurgery in a prospective randomised clinical trial. Cancer Immunol. Immunother. 21, 133–140 (1986).

    Article  CAS  PubMed  Google Scholar 

  4. Antinoff, N. & Hahn, K. Ferret oncology: diseases, diagnostics, and therapeutics. Vet. Clin. North Am. Exot. Anim. Pract. 7, 579–625 (2004).

    Article  PubMed  Google Scholar 

  5. Nasir, L. & Reid, S. W. Bovine papillomaviral gene expression in equine sarcoid tumours. Virus Res. 61, 171–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Heinzerling, L. et al. Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum. Gene Ther. 16, 35–48 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Seltenhammer, M. H. et al. Comparative histopathology of grey-horse-melanoma and human malignant melanoma. Pigment Cell Res. 17, 674–681 (2004).

    Article  PubMed  Google Scholar 

  8. Hershey, A. E., Dubielzig, R. R., Padilla, M. L. & Helfand, S. C. Aberrant p53 expression in feline vaccine-associated sarcomas and correlation with prognosis. Vet. Pathol. 42, 805–811 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. MacEwen, E. G., Patnaik, A. K., Harvey, H. J., Hayes, A. A. & Matus, R. Canine oral melanoma: comparison of surgery versus surgery plus Corynebacterium parvum. Cancer Invest. 4, 397–402 (1986).

    Article  CAS  PubMed  Google Scholar 

  10. Weiden, P. L. et al. Treatment of canine malignancies by 1200 R total body irradiation and autologous marrow grafts. Exp. Hematol. 3, 124–134 (1975).

    CAS  PubMed  Google Scholar 

  11. Tsoi, M. S., Weiden, P. L. & Storb, R. Lymphocyte reactivity to autochthonous tumor cells in dogs with spontaneous malignancies. Cell Immunol. 13, 431–439 (1974).

    Article  CAS  PubMed  Google Scholar 

  12. Storb, R., Epstein, R. B., Ragde, H., Bryant, J. & Thomas, E. D. Marrow engraftment by allogeneic leukocytes in lethally irradiated dogs. Blood 30, 805–811 (1967).

    CAS  PubMed  Google Scholar 

  13. Crow, S. E. et al. Chemoimmunotherapy for canine lymphosarcoma. Cancer 40, 2102–2108 (1977).

    Article  CAS  PubMed  Google Scholar 

  14. Benjamini, E. et al. Tumor vaccines for immunotherapy of canine lymphosarcoma. Ann. NY Acad. Sci. 277, 305–312 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Porrello, A., Cardelli, P. & Spugnini, E. P. Oncology of companion animals as a model for humans. an overview of tumor histotypes. J. Exp. Clin. Cancer Res. 25, 97–105 (2006).

    CAS  PubMed  Google Scholar 

  16. Mueller, F., Fuchs, B. & Kaser-Hotz, B. Comparative biology of human and canine osteosarcoma. Anticancer Res. 27, 155–164 (2007).

    CAS  PubMed  Google Scholar 

  17. Waters, D. J. & Wildasin, K. Cancer clues from pet dogs. Sci. Am. 295, 94–101 (2006).

    Article  PubMed  Google Scholar 

  18. Waters, D. J. High-grade prostatic intraepithelial neoplasia in dogs. Eur. Urol. 35, 456–458 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Knapp, D. W. & Waters, D. J. Naturally occurring cancer in pet dogs: important models for developing improved cancer therapy for humans. Mol. Med. Today 3, 8–11 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Khanna, C. et al. The dog as a cancer model. Nature Biotechnol. 24, 1065–1066 (2006).

    Article  CAS  Google Scholar 

  21. Lindblad-Toh, K. et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438, 803–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Ostrander, E. A., Giger, U. & Lindblad-Toh, K. The Dog and its Genome 584 (Cold Spring Harbor Laboratory, New York, 2006).

    Google Scholar 

  23. Thomas, R. et al. Construction of a 2-Mb resolution BAC microarray for CGH analysis of canine tumors. Genome Res. 15, 1831–1837 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Withrow, S. J., Powers, B. E., Straw, R. C. & Wilkins, R. M. Comparative aspects of osteosarcoma. Dog versus man. Clin. Orthop. Relat Res. 270, 159–168 (1991).

    Google Scholar 

  25. Vail, D. M. & MacEwen, E. G., Spontaneously occurring tumors of companion animals as models for human cancer. Cancer Invest. 18, 781–792 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. O'Brien, S. J. & Murphy, W. J. Genomics. A dog's breakfast? Science 301, 1854–1855 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Hoffman, M. M. & Birney, E. Estimating the neutral rate of nucleotide substitution using introns. Mol. Biol. Evol. 24, 522–531 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Patronek, G. J., Waters, D. J. & Glickman, L. T. Comparative longevity of pet dogs and humans: implications for gerontology research. J. Gerontol A Biol. Sci. Med. Sci. 52, B171–B178 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Bukowski, J. A., Wartenberg, D. & Goldschmidt, M. Environmental causes for sinonasal cancers in pet dogs, and their usefulness as sentinels of indoor cancer risk. J. Toxicol. Environ. Health A 54, 579–591 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Hayes, H. M., Jr & Fraumeni, J. F., Jr. Epidemiological features of canine renal neoplasms. Cancer Res. 37, 2553–2556 (1977).

    PubMed  Google Scholar 

  31. Misdorp, W. & Hart, A. A. Canine mammary cancer. II. Therapy and causes of death. J. Small Anim. Pract 20, 395–404 (1979).

    Article  CAS  PubMed  Google Scholar 

  32. Mukaratirwa, S. Prognostic and predictive markers in canine tumours: rationale and relevance. A review. Vet. Q. 27, 52–64 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Olson, P. N. Using the canine genome to cure cancer and other diseases. Theriogenology 68, 378–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Thomas, R., Smith, K. C., Ostrander, E. A., Galibert, F. & Breen, M. Chromosome aberrations in canine multicentric lymphomas detected with comparative genomic hybridisation and a panel of single locus probes. Br. J. Cancer 89, 1530–1537 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Khanna, C. et al. A randomized controlled trial of octreotide pamoate long-acting release and carboplatin versus carboplatin alone in dogs with naturally occurring osteosarcoma: evaluation of insulin-like growth factor suppression and chemotherapy. Clin. Cancer Res. 8, 2406–2412 (2002).

    CAS  PubMed  Google Scholar 

  36. Khanna, C. & Vail, D. M. Targeting the lung: preclinical and comparative evaluation of anticancer aerosols in dogs with naturally occurring cancers. Curr. Cancer Drug Targets 3, 265–273 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Bergman, P. J. et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin. Cancer Res. 9, 1284–1290 (2003).

    CAS  PubMed  Google Scholar 

  38. Mutsaers, A. J., Widmer, W. R. & Knapp, D. W. Canine transitional cell carcinoma. J. Vet. Intern. Med. 17, 136–144 (2003).

    Article  PubMed  Google Scholar 

  39. Mohammed, S. I. et al. Effects of the cyclooxygenase inhibitor, piroxicam, on tumor response, apoptosis, and angiogenesis in a canine model of human invasive urinary bladder cancer. Cancer Res. 62, 356–358 (2002).

    CAS  PubMed  Google Scholar 

  40. Koenig, A., Bianco, S. R., Fosmire, S., Wojcieszyn, J. & Modiano, J. F. Expression and significance of p53, rb, p21/waf-1, p16/ink-4a, and PTEN tumor suppressors in canine melanoma. Vet. Pathol. 39, 458–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Modiano, J. F., Ritt, M. G. & Wojcieszyn, J. The molecular basis of canine melanoma: pathogenesis and trends in diagnosis and therapy. J. Vet. Intern. Med. 13, 163–174 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Setoguchi, A. et al. Aberrations of the p53 tumor suppressor gene in various tumors in dogs. Am. J. Vet. Res. 62, 433–439 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Haga, S. et al. Overexpression of the p53 gene product in canine mammary tumors. Oncol. Rep. 8, 1215–1219 (2001).

    CAS  PubMed  Google Scholar 

  44. Pryer, N. K. et al. Proof of target for SU11654: inhibition of KIT phosphorylation in canine mast cell tumors. Clin. Cancer Res. 9, 5729–5734 (2003).

    CAS  PubMed  Google Scholar 

  45. Ozaki, K., Yamagami, T., Nomura, K. & Narama, I. Mast cell tumors of the gastrointestinal tract in 39 dogs. Vet. Pathol. 39, 557–564 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. London, C. A., Kisseberth, W. C., Galli, S. J., Geissler, E. N. & Helfand, S. C. Expression of stem cell factor receptor (c-kit) by the malignant mast cells from spontaneous canine mast cell tumours. J. Comp. Pathol. 115, 399–414 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. London, C. A. et al. Spontaneous canine mast cell tumors express tandem duplications in the proto-oncogene c-kit. Exp. Hematol. 27, 689–697 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Kiupel, M., Webster, J. D., Kaneene, J. B., Miller, R. & Yuzbasiyan-Gurkan, V. The use of KIT and tryptase expression patterns as prognostic tools for canine cutaneous mast cell tumors. Vet. Pathol. 41, 371–377 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Anderson, P. Liposomal muramyl tripeptide phosphatidyl ethanolamine: ifosfamide-containing chemotherapy in osteosarcoma. Future Oncol. 2, 333–343 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Leahy, M. F., Seymour, J. F., Hicks, R. J. & Turner, J. H. Multicenter phase II clinical study of iodine-131-rituximab radioimmunotherapy in relapsed or refractory indolent non-Hodgkin's lymphoma. J. Clin. Oncol. 24, 4418–4425 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Tomita, N. et al. Phase II study of CHOP-GR therapy for advanced-stage follicular lymphoma. Leuk. Lymphoma 47, 1041–1047 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Rusk, A. et al. Cooperative activity of cytotoxic chemotherapy with antiangiogenic thrombospondin-I peptides, ABT-526 in pet dogs with relapsed lymphoma. Clin. Cancer Res. 12, 7456–7464 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. MacDonald, V. S., Thamm, D. H., Kurzman, I. D., Turek, M. M. & Vail, D. M. Does L-asparaginase influence efficacy or toxicity when added to a standard CHOP protocol for dogs with lymphoma? J. Vet. Intern. Med. 19, 732–736 (2005).

    Article  PubMed  Google Scholar 

  54. Avery, A. C. & Avery, P. R. Determining the significance of persistent lymphocytosis. Vet. Clin. North Am. Small Anim. Pract. 37, 267–282 (2007).

    Article  PubMed  Google Scholar 

  55. Lana, S., Plaza, S., Hampe, K., Burnett, R. & Avery, A. C. Diagnosis of mediastinal masses in dogs by flow cytometry. J. Vet. Intern. Med. 20, 1161–1165 (2006).

    Article  PubMed  Google Scholar 

  56. Lana, S. E., Jackson, T. L., Burnett, R. C., Morley, P. S. & Avery, A. C. Utility of polymerase chain reaction for analysis of antigen receptor rearrangement in staging and predicting prognosis in dogs with lymphoma. J. Vet. Intern. Med. 20, 329–334 (2006).

    Article  PubMed  Google Scholar 

  57. Forrest, L. J. et al. The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes. Int. J. Radiat. Oncol. Biol. Phys. 60, 1639–1644 (2004).

    Article  PubMed  Google Scholar 

  58. Kippenes, H. et al. Spatial accuracy of fractionated IMRT delivery studies in canine paraspinal irradiation. Vet. Radiol Ultrasound. 44, 360–366 (2003).

    Article  PubMed  Google Scholar 

  59. Mackie, T. R. et al. Image guidance for precise conformal radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 56, 89–105 (2003).

    Article  PubMed  Google Scholar 

  60. Rassnick, K. M. et al. Treatment of canine mast cell tumors with CCNU (lomustine). J. Vet. Intern. Med. 13, 601–605 (1999).

    Article  CAS  PubMed  Google Scholar 

  61. Ogilvie, G. K. et al. Evaluation of single-agent chemotherapy for treatment of clinically evident osteosarcoma metastases in dogs: 45 cases (1987–1991). J. Am. Vet. Med. Assoc. 202, 304–306 (1993).

    CAS  PubMed  Google Scholar 

  62. Ogilvie, G. K. et al. Acute and short-term toxicoses associated with the administration of doxorubicin to dogs with malignant tumors. J. Am. Vet. Med. Assoc. 195, 1584–1587 (1989).

    CAS  PubMed  Google Scholar 

  63. Bergman, P. J. et al. Amputation and carboplatin for treatment of dogs with osteosarcoma: 48 cases (1991 to 1993). J. Vet. Intern. Med. 10, 76–81 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Garrett, L. D., Thamm, D. H., Chun, R., Dudley, R. & Vail, D. M. Evaluation of a 6-month chemotherapy protocol with no maintenance therapy for dogs with lymphoma. J. Vet. Intern. Med. 16, 704–709 (2002).

    Article  PubMed  Google Scholar 

  65. Kamb, A., Wee, S. & Lengauer, C. Why is cancer drug discovery so difficult? Nature Rev. Drug Discov. 6, 115–120 (2007).

    Article  CAS  Google Scholar 

  66. Kola, I. & Landis, J. Can the pharmaceutical industry reduce attrition rates? Nature Rev. Drug Discov. 3, 711–715 (2004).

    Article  CAS  Google Scholar 

  67. LaRue, S. M. et al. Limb-sparing treatment for osteosarcoma in dogs. J. Am. Vet. Med. Assoc. 195, 1734–1744 (1989).

    CAS  PubMed  Google Scholar 

  68. Withrow, S. J. et al. Intra-arterial cisplatin with or without radiation in limb-sparing for canine osteosarcoma. Cancer 71, 2484–2490 (1993).

    Article  CAS  PubMed  Google Scholar 

  69. Dewhirst, M. W. Animal modeling and thermal dose. Radiol. Clin. North Am. 27, 509–518 (1989).

    CAS  PubMed  Google Scholar 

  70. Dow, S. W. et al. In vivo tumor transfection with superantigen plus cytokine genes induces tumor regression and prolongs survival in dogs with malignant melanoma. J. Clin. Invest. 101, 2406–2414 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dow, S. W. & Potter, T. A. Expression of bacterial superantigen genes in mice induces localized mononuclear cell inflammatory responses. J. Clin. Invest. 99, 2616–2624 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Elmslie, R. E. & Dow, S. W. Genetic immunotherapy for cancer. Semin. Vet. Med. Surg. (Small Anim.) 12, 193–205 (1997).

    Article  CAS  Google Scholar 

  73. Ladiges, W. C. et al. Failure of anti-MHC antibodies to prevent GVHD in DLA mismatched unrelated canine marrow recipients. Bone Marrow Transplant. 5, 43–46 (1990).

    CAS  PubMed  Google Scholar 

  74. Ladiges, W. C., Storb, R. & Thomas, E. D. Canine models of bone marrow transplantation. Lab. Anim. Sci. 40, 11–15 (1990).

    CAS  PubMed  Google Scholar 

  75. Whelan, H. T. et al. The role of photodynamic therapy in posterior fossa brain tumors. A preclinical study in a canine glioma model. J. Neurosurg. 79, 562–568 (1993).

    Article  CAS  PubMed  Google Scholar 

  76. Hershey, A. E. et al. Inhalation chemotherapy for macroscopic primary or metastatic lung tumors: proof of principle using dogs with spontaneously occurring tumors as a model. Clin. Cancer Res. 5, 2653–2659 (1999).

    CAS  PubMed  Google Scholar 

  77. Khanna, C. et al. Nebulized interleukin 2 liposomes: aerosol characteristics and biodistribution. J. Pharm. Pharmacol. 49, 960–971 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Khanna, C. et al. Interleukin-2 liposome inhalation therapy is safe and effective for dogs with spontaneous pulmonary metastases. Cancer 79, 1409–1421 (1997).

    Article  CAS  PubMed  Google Scholar 

  79. Khanna, C., Hasz, D. E., Klausner, J. S. & Anderson, P. M. Aerosol delivery of interleukin 2 liposomes is nontoxic and biologically effective: canine studies. Clin. Cancer Res. 2, 721–734 (1996).

    CAS  PubMed  Google Scholar 

  80. Otterson, G. A. et al. Phase I study of inhaled Doxorubicin for patients with metastatic tumors to the lungs. Clin. Cancer Res. 13, 1246–1252 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Rao, R. D., Anderson, P. M., Arndt, C. A., Wettstein, P. J. & Markovic, S. N. Aerosolized granulocyte macrophage colony-stimulating factor (GM-CSF) therapy in metastatic cancer. Am. J. Clin. Oncol. 26, 493–498 (2003).

    Article  CAS  PubMed  Google Scholar 

  82. Rao, R. D., Markovic, S. N. & Anderson, P. M. Aerosol therapy for malignancy involving the lungs. Curr. Cancer Drug Targets. 3, 239–250 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Rusk, A. et al. Preclinical evaluation of antiangiogenic thrombospondin-1 peptide mimetics, ABT-526 and ABT-510, in companion dogs with naturally occurring cancers. Clin. Cancer Res. 12, 7444–7455 (2006).

    Article  CAS  PubMed  Google Scholar 

  84. London, C. A. et al. Phase I dose-escalating study of SU11654, a small molecule receptor tyrosine kinase inhibitor, in dogs with spontaneous malignancies. Clin. Cancer Res. 9, 2755–2768 (2003).

    CAS  PubMed  Google Scholar 

  85. Zemke, D., Yamini, B. & Yuzbasiyan-Gurkan, V. Mutations in the juxtamembrane domain of c-KIT are associated with higher grade mast cell tumors in dogs. Vet. Pathol. 39, 529–535 (2002).

    Article  CAS  PubMed  Google Scholar 

  86. Reguera, M. J., Rabanal, R. M., Puigdemont, A. & Ferrer, L. Canine mast cell tumors express stem cell factor receptor. Am. J. Dermatopathol 22, 49–54 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Anderson, P. M. et al. Aerosol granulocyte macrophage-colony stimulating factor: a low toxicity, lung-specific biological therapy in patients with lung metastases. Clin. Cancer Res. 5, 2316–2323 (1999).

    CAS  PubMed  Google Scholar 

  88. Norden-Zfoni, A. et al. Blood-based biomarkers of SU11248 activity and clinical outcome in patients with metastatic imatinib-resistant gastrointestinal stromal tumor. Clin. Cancer Res. 13, 2643–2650 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Britten, C. D. et al. A phase I and pharmacokinetic study of sunitinib administered daily for 2 weeks, followed by a 1-week off period. Cancer Chemother. Pharmacol. 61, 515–524 (2007).

    Article  PubMed  CAS  Google Scholar 

  90. Figlin, R. A. Newly approved therapies for RCC and their effect on the standard of care. Clin. Adv. Hematol. Oncol. 5, 35–36, 66 (2007).

    PubMed  Google Scholar 

  91. Hornick, J. L. & Fletcher, C. D. The role of KIT in the management of patients with gastrointestinal stromal tumors. Hum. Pathol. 38, 679–687 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Rubin, B. P., Heinrich, M. C. & Corless, C. L. Gastrointestinal stromal tumour. Lancet 369, 1731–1741 (2007).

    Article  CAS  PubMed  Google Scholar 

  93. von Mehren, M. Beyond imatinib: second generation c-KIT inhibitors for the management of gastrointestinal stromal tumors. Clin. Colorectal Cancer 6 (Suppl. 1), S30–S34 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Kurzman, I. D. et al. Adjuvant therapy for osteosarcoma in dogs: results of randomized clinical trials using combined liposome-encapsulated muramyl tripeptide and cisplatin. Clin. Cancer Res. 1, 1595–1601 (1995).

    CAS  PubMed  Google Scholar 

  95. Kleinerman, E. S., Gano, J. B., Johnston, D. A., Benjamin, R. S. & Jaffe, N. Efficacy of liposomal muramyl tripeptide (CGP 19835A) in the treatment of relapsed osteosarcoma. Am. J. Clin. Oncol. 18, 93–99 (1995).

    Article  CAS  PubMed  Google Scholar 

  96. Kleinerman, E. S. Biologic therapy for osteosarcoma using liposome-encapsulated muramyl tripeptide. Hematol. Oncol. Clin. North Am. 9, 927–938 (1995).

    Article  CAS  PubMed  Google Scholar 

  97. Meyers, P. A. et al. Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J. Clin. Oncol. 23, 2004–2011 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Nardin, A., Lefebvre, M. L., Labroquere, K., Faure, O. & Abastado, J. P. Liposomal muramyl tripeptide phosphatidylethanolamine: Targeting and activating macrophages for adjuvant treatment of osteosarcoma. Curr. Cancer Drug Targets 6, 123–133 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Liao, J. C. et al. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immun. 6, 8 (2006).

    PubMed  Google Scholar 

  100. Bergman, P. J. et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 24, 4582–4585 (2006).

    Article  CAS  PubMed  Google Scholar 

  101. MacEwen, E. G., et al. Adjuvant therapy for melanoma in dogs: results of randomized clinical trials using surgery, liposome-encapsulated muramyl tripeptide, and granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 5, 4249–4258 (1999).

    CAS  PubMed  Google Scholar 

  102. Vail, D. M. et al. Liposome-encapsulated muramyl tripeptide phosphatidylethanolamine adjuvant immunotherapy for splenic hemangiosarcoma in the dog: a randomized multi-institutional clinical trial. Clin. Cancer Res. 1, 1165–1170 (1995).

    CAS  PubMed  Google Scholar 

  103. Mack, G. S. Clinical trials going to the dogs: canine program to study tumor treatment, biology. J. Natl Cancer Inst. 98, 161–162 (2006).

    Article  PubMed  Google Scholar 

  104. Martirosov, K. S., Grigor'ev Iu, G., Borovkov, M. V. & Zorin, V. V. [Experimental study of the role of blocking 5-HT3-receptors of serotonin and D2-receptors of dopamine in the mechanism of early radiation vomiting in dogs]. Radiats Biol. Radioecol 42, 75–79 (2002) (in Russian).

    CAS  PubMed  Google Scholar 

  105. Legeza, V. I., Shagoian, M. G., Kamynina, M. F., Markovskaia, I. V. & Martirosov, K. S. [Mechanism of the species characteristics of the sensitivity of monkeys and dogs to the emetic action of various pharmacological agents]. Biull Eksp. Biol. Med. 93, 64–66 (1982) (in Russian).

    Article  CAS  PubMed  Google Scholar 

  106. Modiano, J. F. et al. Distinct B-cell and T-cell lymphoproliferative disease prevalence among dog breeds indicates heritable risk. Cancer Res. 65, 5654–5661 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Lingaas, F. et al. A mutation in the canine BHD gene is associated with hereditary multifocal renal cystadenocarcinoma and nodular dermatofibrosis in the German Shepherd dog. Hum. Mol. Genet. 12, 3043–3053 (2003).

    Article  CAS  PubMed  Google Scholar 

  108. MacEwen, E. G., et al. Current studies of liposome muramyl tripeptide (CGP 19835A lipid) therapy for metastasis in spontaneous tumors: a progress review. J. Drug Target 2, 391–396 (1994).

    Article  CAS  PubMed  Google Scholar 

  109. Thamm, D. H. et al. Systemic administration of an attenuated, tumor-targeting Salmonella typhimurium to dogs with spontaneous neoplasia: phase I evaluation. Clin. Cancer Res. 11, 4827–4834 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Mack, G. S. Cancer researchers usher in dog days of medicine. Nature Med. 11, 1018 (2005).

    PubMed  Google Scholar 

  111. Reiser, H. et al. GS-9219 - A novel acyclic nucleotide analog with potent anti-neoplastic activity in dogs with spontaneous non-Hodgkin's lymphoma. Clin. Cancer Res. (in the press).

Download references

Acknowledgements

The authors are grateful for the contributions of C. Mazcko to the COP and the preparation of this manuscript. We also acknowledge the commitment and dedication of the members of the COTC and CCOGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chand Khanna.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

National cancer institute Drug Dictionary

sunitinib malate

FURTHER INFORMATION

Chand Khanna's homepage

Affymetrix

American College of Veterinary Internal Medicine

American College of Veterinary Radiology-Radiation Oncology

Center for Cancer Research — Comparative Oncology Program

Dog Genome Sequencing Project at the Broad Institute

E. A. Ostrander at the National Human Genome Research Institute

European College of Veterinary Internal Medicine

IDM Pharma

Merial US

Veterinary Cancer Society

VISTA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paoloni, M., Khanna, C. Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 8, 147–156 (2008). https://doi.org/10.1038/nrc2273

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2273

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing