Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

MYC as a regulator of ribosome biogenesis and protein synthesis

Abstract

MYC regulates the transcription of thousands of genes required to coordinate a range of cellular processes, including those essential for proliferation, growth, differentiation, apoptosis and self-renewal. Recently, MYC has also been shown to serve as a direct regulator of ribosome biogenesis. MYC coordinates protein synthesis through the transcriptional control of RNA and protein components of ribosomes, and of gene products required for the processing of ribosomal RNA, the nuclear export of ribosomal subunits and the initiation of mRNA translation. We discuss how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MYC regulates diverse biological processes.
Figure 2: Gene regulation by the MYC network.
Figure 3: A brief overview of ribosome biogenesis.
Figure 4: MYC controls multiple components of ribosome biogenesis.
Figure 5: MYC may contribute to changes in cell function through the regulation of ribosome biogenesis.

Similar content being viewed by others

References

  1. Pelengaris, S. & Khan, M. The many faces of c-MYC. Arch. Biochem. Biophys. 416, 129–136 (2003).

    CAS  PubMed  Google Scholar 

  2. Eilers, M. & Eisenman, R. N. Myc's broad reach. Genes Dev. 22, 2755–2766 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Dang, C. V. et al. The c-Myc target gene network. Semin. Cancer Biol. 16, 253–264 (2006).

    CAS  PubMed  Google Scholar 

  4. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    CAS  PubMed  Google Scholar 

  5. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nature Rev. Mol. Cell Biol. 6, 635–645 (2005).

    CAS  Google Scholar 

  6. Dang, C. V. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol. Cell. Biol. 19, 1–11 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bouchard, C. et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev. 15, 2042–2047 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Knoepfler, P. S. et al. Myc influences global chromatin structure. EMBO J. 25, 2723–2734 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cole, M. D. & Cowling, V. H. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nature Rev. Mol. Cell Biol. 9, 810–815 (2008).

    CAS  Google Scholar 

  11. Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Grandori, C. et al. c-Myc binds to human ribosomal DNA and stimulates transcription of rRNA genes by RNA polymerase I. Nature Cell Biol. 7, 311–318 (2005).

    CAS  PubMed  Google Scholar 

  13. Grewal, S. S., Li, L., Orian, A., Eisenman, R. N. & Edgar, B. A. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nature Cell Biol. 7, 295–302 (2005).

    CAS  PubMed  Google Scholar 

  14. Dai, M. S. & Lu, H. Crosstalk between c-Myc and ribosome in ribosomal biogenesis and cancer. J. Cell Biochem. 105, 670–677 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Arabi, A. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nature Cell Biol. 7, 303–310 (2005).

    CAS  PubMed  Google Scholar 

  16. Zeller, K. I. et al. Global mapping of c-Myc binding sites and target gene networks in human B cells. Proc. Natl Acad. Sci. USA 103, 17834–17839 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Fernandez, P. C. et al. Genomic targets of the human c-Myc protein. Genes Dev. 17, 1115–1129 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blackwood, E. M. & Eisenman, R. N. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251, 1211–1217 (1991).

    CAS  PubMed  Google Scholar 

  20. Blackwell, T. K., Kretzner, L., Blackwood, E. M., Eisenman, R. N. & Weintraub, H. Sequence-specific DNA binding by the c-Myc protein. Science 250, 1149–1151 (1990).

    CAS  PubMed  Google Scholar 

  21. Papoulas, O., Williams, N. G. & Kingston, R. E. DNA binding activities of c-Myc purified from eukaryotic cells. J. Biol. Chem. 267, 10470–10480 (1992).

    CAS  PubMed  Google Scholar 

  22. Frank, S. R. et al. MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4, 575–580 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ayer, D. E., Lawrence, Q. A. & Eisenman, R. N. Mad–Max transcriptional repression is mediated by ternary complex formation with mammalian homologs of yeast repressor Sin3. Cell 80, 767–776 (1995).

    CAS  PubMed  Google Scholar 

  25. Schreiber-Agus, N. et al. An amino-terminal domain of Mxi1 mediates anti-Myc oncogenic activity and interacts with a homolog of the yeast transcriptional repressor SIN3. Cell 80, 777–786 (1995).

    CAS  PubMed  Google Scholar 

  26. Seoane, J. et al. TGFβ influences Myc, Miz-1 and Smad to control the CDK inhibitor p15INK4b. Nature Cell Biol. 3, 400–408 (2001).

    CAS  PubMed  Google Scholar 

  27. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz-1. Nature Cell Biol. 3, 392–399 (2001).

    CAS  PubMed  Google Scholar 

  28. Brenner, C. et al. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J. 24, 336–346 (2005).

    CAS  PubMed  Google Scholar 

  29. Wu, S. et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22, 351–360 (2003).

    CAS  PubMed  Google Scholar 

  30. Steiger, D., Furrer, M., Schwinkendorf, D. & Gallant, P. Max-independent functions of Myc in Drosophila melanogaster. Nature Genet. 40, 1084–1091 (2008).

    CAS  PubMed  Google Scholar 

  31. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    CAS  PubMed  Google Scholar 

  32. Knoepfler, P. S. Myc goes global: new tricks for an old oncogene. Cancer Res. 67, 5061–5063 (2007).

    CAS  PubMed  Google Scholar 

  33. Wu, C. H. et al. Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation. Proc. Natl Acad. Sci. USA 104, 13028–13033 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Lindstrom, M. S. Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem. Biophys. Res. Commun. 379, 167–170 (2009).

    PubMed  Google Scholar 

  35. Rodnina, M. V. & Wintermeyer, W. Recent mechanistic insights into eukaryotic ribosomes. Curr. Opin. Cell Biol. 21, 435–443 (2009).

    CAS  PubMed  Google Scholar 

  36. Schlosser, I. et al. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res. 31, 6148–6156 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Tschochner, H. & Hurt, E. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 13, 255–263 (2003).

    CAS  PubMed  Google Scholar 

  38. Uechi, T., Tanaka, T. & Kenmochi, N. A complete map of the human ribosomal protein genes: assignment of 80 genes to the cytogenetic map and implications for human disorders. Genomics 72, 223–230 (2001).

    CAS  PubMed  Google Scholar 

  39. Roeder, R. G. & Rutter, W. J. Specific nucleolar and nucleoplasmic RNA polymerases. Proc. Natl Acad. Sci. USA 65, 675–682 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Savkur, R. S. & Olson, M. O. Preferential cleavage in pre-ribosomal RNA byprotein B23 endoribonuclease. Nucleic Acids Res. 26, 4508–4515 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bowman, L. H., Rabin, B. & Schlessinger, D. Multiple ribosomal RNA cleavage pathways in mammalian cells. Nucleic Acids Res. 9, 4951–4966 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Weinmann, R. & Roeder, R. G. Role of DNA-dependent RNA polymerase 3 in the transcription of the tRNA and 5S RNA genes. Proc. Natl Acad. Sci. USA 71, 1790–1794 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gebauer, F. & Hentze, M. W. Molecular mechanisms of translational control. Nature Rev. Mol. Cell Biol. 5, 827–835 (2004).

    CAS  Google Scholar 

  44. Asano, K., Clayton, J., Shalev, A. & Hinnebusch, A. G. A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA (Met) is an important translation initiation intermediate in vivo. Genes Dev. 14, 2534–2546 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Scheper, G. C. et al. Phosphorylation of eukaryotic initiation factor 4E markedly reduces its affinity for capped mRNA. J. Biol. Chem. 277, 3303–3309 (2002).

    CAS  PubMed  Google Scholar 

  46. Hernandez, G. & Vazquez-Pianzola, P. Functional diversity of the eukaryotic translation initiation factors belonging to eIF4 families. Mech. Dev. 122, 865–876 (2005).

    CAS  PubMed  Google Scholar 

  47. Kaiser, C. et al. Activation of cap-independent translation by variant eukaryotic initiation factor 4G in vivo. RNA 14, 2170–2182 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Qin, X. & Sarnow, P. Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J. Biol. Chem. 279, 13721–13728 (2004).

    CAS  PubMed  Google Scholar 

  49. Volarevic, S. et al. Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288, 2045–2047 (2000).

    CAS  PubMed  Google Scholar 

  50. Sulic, S. et al. Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev. 19, 3070–3082 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Panic, L. et al. Ribosomal protein S6 gene haploinsufficiency is associated with activation of a p53-dependent checkpoint during gastrulation. Mol. Cell. Biol. 26, 8880–8891 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Barkic, M. et al. The p53 tumor suppressor causes congenital malformations in Rpl24-deficient mice and promotes their survival. Mol. Cell. Biol. 29, 2489–2504 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Kirn-Safran, C. B. et al. Global growth deficiencies in mice lacking the ribosomal protein HIP/RPL29. Dev. Dyn. 236, 447–460 (2007).

    CAS  PubMed  Google Scholar 

  54. Liu, J. J., Huang, B. H., Zhang, J., Carson, D. D. & Hooi, S. C. Repression of HIP/RPL29 expression induces differentiation in colon cancer cells. J. Cell. Physiol. 207, 287–292 (2006).

    CAS  PubMed  Google Scholar 

  55. Wang, Y., Cheong, D., Chan, S. & Hooi, S. C. Heparin/heparan sulfate interacting protein gene expression is up-regulated in human colorectal carcinoma and correlated with differentiation status and metastasis. Cancer Res. 59, 2989–2994 (1999).

    CAS  PubMed  Google Scholar 

  56. Anderson, S. J. et al. Ablation of ribosomal protein L22 selectively impairs αβ T cell development by activation of a p53-dependent checkpoint. Immunity 26, 759–772 (2007).

    CAS  PubMed  Google Scholar 

  57. Ruggero, D. et al. The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nature Med. 10, 484–6 (2004).

    CAS  PubMed  Google Scholar 

  58. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    CAS  Google Scholar 

  59. Naora, H., Takai, I. & Adachi, M. Altered cellular responses by varying expression of a ribosomal protein gene: sequential coordination of enhancement and suppression of ribosomal protein S3a gene expression induces apoptosis. J. Cell Biol. 141, 741–753 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kondoh, N. et al. Enhanced expression of S8, L12, L23a, L27 and L30 ribosomal protein mRNAs in human hepatocellular carcinoma. Anticancer Res. 21, 2429–2433 (2001).

    CAS  PubMed  Google Scholar 

  61. Dai, M. S., Arnold, H., Sun, X. X., Sears, R. & Lu, H. Inhibition of c-Myc activity by ribosomal protein L11. EMBO J. 26, 3332–3345 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lohrum, M. A., Ludwig, R. L., Kubbutat, M. H., Hanlon, M. & Vousden, K. H. Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 3, 577–587 (2003).

    CAS  PubMed  Google Scholar 

  63. Zhang, Y. et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol. Cell. Biol. 23, 8902–8912 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Bhat, K. P., Itahana, K., Jin, A. & Zhang, Y. Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J. 23, 2402–2412 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Dai, M. S., Sears, R. & Lu, H. Feedback regulation of c-Myc by ribosomal protein L11. Cell Cycle 6, 2735–2741 (2007).

    CAS  PubMed  Google Scholar 

  66. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    CAS  PubMed  Google Scholar 

  67. Iritani, B. M. & Eisenman, R. N. c-Myc enhances protein synthesis and cell size during B lymphocyte development. Proc. Natl Acad. Sci. USA 96, 13180–13185 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    CAS  PubMed  Google Scholar 

  69. Saeboe-Larssen, S., Lyamouri, M., Merriam, J., Oksvold, M. P. & Lambertsson, A. Ribosomal protein insufficiency and the minute syndrome in Drosophila: a dose-response relationship. Genetics 148, 1215–1224 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pierce, S. B. et al. dMyc is required for larval growth and endoreplication in Drosophila. Development 131, 2317–2327 (2004).

    CAS  PubMed  Google Scholar 

  71. Schuhmacher, M. et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 29, 397–406 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kim, S., Li, Q., Dang, C. V. & Lee, L. A. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc. Natl Acad. Sci. USA 97, 11198–11202 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Beer, S. et al. Developmental context determines latency of MYC-induced tumorigenesis. PLoS Biol. 2, e332 (2004).

    PubMed  PubMed Central  Google Scholar 

  74. Trumpp, A. et al. c-Myc regulates mammalian body size by controlling cell number but not cell size. Nature 414, 768–773 (2001).

    CAS  PubMed  Google Scholar 

  75. Mateyak, M. K., Obaya, A. J., Adachi, S. & Sedivy, J. M. Phenotypes of c-Myc-deficient rat fibroblasts isolated by targeted homologous recombination. Cell Growth Differ. 8, 1039–1048 (1997).

    CAS  PubMed  Google Scholar 

  76. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zeller, K. I. et al. Characterization of nucleophosmin (B23) as a Myc target by scanning chromatin immunoprecipitation. J. Biol. Chem. 276, 48285–48291 (2001).

    CAS  PubMed  Google Scholar 

  78. Friedrich, J. K., Panov, K. I., Cabart, P., Russell, J. & Zomerdijk, J. C. TBP–TAF complex SL1 directs RNA polymerase I pre-initiation complex formation and stabilizes upstream binding factor at the rDNA promoter. J. Biol. Chem. 280, 29551–29558 (2005).

    CAS  PubMed  Google Scholar 

  79. Poortinga, G. et al. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J. 23, 3325–3335 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Oskarsson, T. & Trumpp, A. The Myc trilogy: lord of RNA polymerases. Nature Cell Biol. 7, 215–217 (2005).

    CAS  PubMed  Google Scholar 

  81. Shiue, C. N., Berkson, R. G. & Wright, A. P. c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 28, 1833–1842 (2009).

    CAS  PubMed  Google Scholar 

  82. Wu, C. H. et al. Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genet. 4, e1000090 (2008).

    PubMed  PubMed Central  Google Scholar 

  83. Maggi, L. B. Jr et al. Nucleophosmin serves as a rate-limiting nuclear export chaperone for the mammalian ribosome. Mol. Cell. Biol. 28, 7050–7065 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. De Benedetti, A. & Graff, J. R. eIF-4E expression and its role in malignancies and metastases. Oncogene 23, 3189–99 (2004).

    CAS  PubMed  Google Scholar 

  85. Russell, J. & Zomerdijk, J. C. The RNA polymerase I transcription machinery. Biochem. Soc. Symp. 73, 203–216 (2006).

    CAS  Google Scholar 

  86. Brown, S. E. & Szyf, M. Dynamic epigenetic states of ribosomal RNA promoters during the cell cycle. Cell Cycle 7, 382–390 (2008).

    CAS  Google Scholar 

  87. Stefanovsky, V., Langlois, F., Gagnon-Kugler, T., Rothblum, L. I. & Moss, T. Growth factor signaling regulates elongation of RNA polymerase I transcription in mammals via UBF phosphorylation and r-chromatin remodeling. Mol. Cell 21, 629–639 (2006).

    CAS  PubMed  Google Scholar 

  88. Mais, C., Wright, J. E., Prieto, J. L., Raggett, S. L. & McStay, B. UBF-binding site arrays form pseudo-NORs and sequester the RNA polymerase I transcription machinery. Genes Dev. 19, 50–64 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chen, D., Belmont, A. S. & Huang, S. Upstream binding factor association induces large-scale chromatin decondensation. Proc. Natl Acad. Sci. USA 101, 15106–15111 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Panov, K. I., Friedrich, J. K., Russell, J. & Zomerdijk, J. C. UBF activates RNA polymerase I transcription by stimulating promoter escape. EMBO J. 25, 3310–3322 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Coller, H. A. et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA 97, 3260–3265 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Thoma, C., Fraterman, S., Gentzel, M., Wilm, M. & Hentze, M. W. Translation initiation by the c-myc mRNA internal ribosome entry sequence and the poly(A) tail. RNA 14, 1579–1589 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Watson, J. D., Oster, S. K., Shago, M., Khosravi, F. & Penn, L. Z. Identifying genes regulated in a Myc-dependent manner. J. Biol. Chem. 277, 36921–36930 (2002).

    CAS  PubMed  Google Scholar 

  94. Ginisty, H., Amalric, F. & Bouvet, P. Nucleolin functions in the first step of ribosomal RNA processing. EMBO J. 17, 1476–1486 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Herrera, J. E., Savkur, R. & Olson, M. O. The ribonuclease activity of nucleolar protein B23. Nucleic Acids Res. 23, 3974–3979 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Szebeni, A. & Olson, M. O. Nucleolar protein B23 has molecular chaperone activities. Protein Sci. 8, 905–912 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Okuwaki, M., Tsujimoto, M. & Nagata, K. The RNA binding activity of a ribosome biogenesis factor, nucleophosmin/B23, is modulated by phosphorylation with a cell cycle-dependent kinase and by association with its subtype. Mol. Biol. Cell 13, 2016–2030 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Li, Z., Boone, D. & Hann, S. R. Nucleophosmin interacts directly with c-Myc and controls c-Myc-induced hyperproliferation and transformation. Proc. Natl Acad. Sci. USA 105, 18794–18799 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Grisendi, S. et al. Role of nucleophosmin in embryonic development and tumorigenesis. Nature 437, 147–153 (2005).

    CAS  PubMed  Google Scholar 

  100. Li, J., Sejas, D. P., Burma, S., Chen, D. J. & Pang, Q. Nucleophosmin suppresses oncogene-induced apoptosis and senescence and enhances oncogenic cooperation in cells with genomic instability. Carcinogenesis 28, 1163–1170 (2007).

    CAS  PubMed  Google Scholar 

  101. Wanzel, M. et al. A ribosomal protein L23-nucleophosmin circuit coordinates Miz1 function with cell growth. Nature Cell Biol. 10, 1051–1061 (2008).

    CAS  PubMed  Google Scholar 

  102. Jin, A., Itahana, K., O'Keefe, K. & Zhang, Y. Inhibition of HDM2 and activation of p53 by ribosomal protein L23. Mol. Cell. Biol. 24, 7669–7680 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Schmidt, E. V. The role of c-myc in regulation of translation initiation. Oncogene 23, 3217–3221 (2004).

    CAS  PubMed  Google Scholar 

  104. Cole, M. D. & Cowling, V. H. Specific regulation of mRNA cap methylation by the c-Myc and E2F1 transcription factors. Oncogene 28, 1169–1175 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Shachaf, C. M. & Felsher, D. W. Tumor dormancy and MYC inactivation: pushing cancer to the brink of normalcy. Cancer Res. 65, 4471–4474 (2005).

    CAS  PubMed  Google Scholar 

  106. Barna, M. et al. Suppression of Myc oncogenic activity by ribosomal protein haploinsufficiency. Nature 456, 971–975 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Draptchinskaia, N. et al. The gene encoding ribosomal protein S19 is mutated in Diamond–Blackfan anaemia. Nature Genet. 21, 169–175 (1999).

    CAS  PubMed  Google Scholar 

  108. Watanabe, M., Zinn, A. R., Page, D. C. & Nishimoto, T. Functional equivalence of human X- and Y-encoded isoforms of ribosomal protein S4 consistent with a role in Turner syndrome. Nature Genet. 4, 268–271 (1993).

    CAS  PubMed  Google Scholar 

  109. Kenmochi, N., Yoshihama, M., Higa, S. & Tanaka, T. The human ribosomal protein L6 gene in a critical region for Noonan syndrome. J. Hum. Genet. 45, 290–293 (2000).

    CAS  PubMed  Google Scholar 

  110. Henry, J. L., Coggin, D. L. & King, C. R. High-level expression of the ribosomal protein L19 in human breast tumors that overexpress erbB-2. Cancer Res. 53, 1403–1408 (1993).

    CAS  PubMed  Google Scholar 

  111. Vaarala, M. H. et al. Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: confirmation of L7a and L37 over-expression in prostate-cancer tissue samples. Int. J. Cancer 78, 27–32 (1998).

    CAS  PubMed  Google Scholar 

  112. Cheng, Q. et al. Identification of molecular markers for the early detection of human squamous cell carcinoma of the uterine cervix. Br. J. Cancer 86, 274–281 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang, Q. et al. Cloning and characterization of full-length human ribosomal protein L15 cDNA which was overexpressed in esophageal cancer. Gene 263, 205–209 (2001).

    CAS  PubMed  Google Scholar 

  114. Kim, J. H. et al. Over-expression of the ribosomal protein L36a gene is associated with cellular proliferation in hepatocellular carcinoma. Hepatology 39, 129–138 (2004).

    CAS  PubMed  Google Scholar 

  115. Wilson, A. et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev. 18, 2747–2763 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Pardal, R., Molofsky, A. V., He, S. & Morrison, S. J. Stem cell self-renewal and cancer cell proliferation are regulated by common networks that balance the activation of proto-oncogenes and tumor suppressors. Cold Spring Harb. Symp. Quant. Biol. 70, 177–185 (2005).

    CAS  PubMed  Google Scholar 

  117. Felsher, D. W. & Bishop, J. M. Reversible tumorigenesis by MYC in hematopoietic lineages. Mol. Cell 4, 199–207 (1999).

    CAS  PubMed  Google Scholar 

  118. Jain, M. et al. Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297, 102–104 (2002).

    CAS  PubMed  Google Scholar 

  119. Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

    CAS  PubMed  Google Scholar 

  120. Li, Z. & Hann, S. R. The Myc–nucleophosmin–ARF network: a complex web unveiled. Cell Cycle 8, 2703–2707 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Weinstein, I. B. & Joe, A. Oncogene addiction. Cancer Res. 68, 3077–3080 (2008).

    CAS  PubMed  Google Scholar 

  122. Jenuwein, T. & Allis, C. D. Translating the histone code. Science 293, 1074–1080 (2001).

    CAS  PubMed  Google Scholar 

  123. Strahl, B. D. & Allis, C. D. The language of covalent histone modifications. Nature 403, 41–45 (2000).

    CAS  PubMed  Google Scholar 

  124. Kobayashi, T. et al. Activation of the ribosomal protein L13 gene in human gastrointestinal cancer. Int. J. Mol. Med. 18, 161–170 (2006).

    CAS  PubMed  Google Scholar 

  125. Pogue-Geile, K. et al. Ribosomal protein genes are overexpressed in colorectal cancer: isolation of a cDNA clone encoding the human S3 ribosomal protein. Mol. Cell. Biol. 11, 3842–3849 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Felsher laboratory for critical reading of the manuscript. Our work is supported by the National Institutes of Health, the Leukemia and Lymphoma Society and the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dean W. Felsher.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

OMIM

Bardet–Biedl syndrome

Camurati–Engelmann disease

Diamond–Blackfan anaemia

Noonan syndrome

Turner syndrome

Pathway Interaction Database 

ARF–p53 pathway

FURTHER INFORMATION

Dean Felsher's homepage

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Riggelen, J., Yetil, A. & Felsher, D. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer 10, 301–309 (2010). https://doi.org/10.1038/nrc2819

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing