Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in sarcoma genomics and new therapeutic targets

A Corrigendum to this article was published on 22 July 2011

This article has been updated

Key Points

  • Human sarcomas are uncommon malignancies that arise from mesenchymal cell types, have varied genetic origins and are clinically heterogeneous. Many sarcomas arise de novo, driven by a single genetic abnormality, and some are progressive and harbour complex genomes.

  • Three core and context-dependent molecular mechanisms drive sarcomagenesis: dysregulation of gene expression by aberrant, chimeric transcription factors generated by specific gene fusions in translocation-associated sarcomas, somatic mutations affecting key signalling pathways and DNA copy-number abnormalities.

  • Novel genomic findings from diverse approaches in sarcoma are identifying point mutations that co-occur with translocations, lineage-specific oncogenes, chromosome remodelling events, and both genomic alterations and mutations that alter canonical signalling and differentiation pathways.

  • As integrative genomics and massively parallel sequencing increase the pace of discovery for the most common lesions in all but the rarest sarcomas, this necessitates renewed focus on developing in vitro and in vivo sarcoma models for accompanying target discovery and functional annotation of sarcoma genomes with genomics-guided functional genetics.

  • Although conventional modalities predominate in sarcoma treatment, new approaches to target aberrant signalling with specific therapies, overcome acquired resistance and target unconventional pathways are rapidly evolving.

Abstract

Increasingly, human mesenchymal malignancies are being classified by the abnormalities that drive their pathogenesis. Although many of these aberrations are highly prevalent within particular sarcoma subtypes, few are currently targeted therapeutically. Indeed, most subtypes of sarcoma are still treated with traditional therapeutic modalities, and in many cases sarcomas are resistant to adjuvant therapies. In this Review, we discuss the core molecular determinants of sarcomagenesis and emphasize the emerging genomic and functional genetic approaches that, coupled with novel therapeutic strategies, have the potential to transform the care of patients with sarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Taxonomy of soft tissue sarcoma.
Figure 2: The structure of sarcoma genomes.
Figure 3: Models and functional genetics.
Figure 4: Pathways for targeted therapy in sarcoma.

Similar content being viewed by others

Change history

  • 22 July 2011

    In Table 2 of this article, there were errors in two of the cells. In the Sunitinib row, under the 'Tumour types' heading, "GIST" should have read "Imatinib-resistant GIST". Also in the Sunitinib row, under the 'Approximate response rate' heading, "80%" should have read "8%". This has now been corrected online.

References

  1. Fletcher, C., Unni, K. & Mertens, F. Pathology and Genetics of Tumors of Soft Tissue and Bone (International Agency for Research on Cancer Press, Lyon, 2002).

    Google Scholar 

  2. Jemal, A., Siegel, R., Xu, J. & Ward, E. Cancer statistics, 2010. CA Cancer J. Clin. 60, 277–300 (2010).

    Article  PubMed  Google Scholar 

  3. Borden, E. C. et al. Soft tissue sarcomas of adults: state of the translational science. Clin. Cancer Res. 9, 1941–1956 (2003).

    PubMed  Google Scholar 

  4. Helman, L. J. & Meltzer, P. Mechanisms of sarcoma development. Nature Rev. Cancer 3, 685–694 (2003).

    Article  CAS  Google Scholar 

  5. Mertens, F. et al. Translocation-related sarcomas. Semin. Oncol. 36, 312–323 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Mercado, G. E. & Barr, F. G. Fusions involving PAX and FOX genes in the molecular pathogenesis of alveolar rhabdomyosarcoma: recent advances. Curr. Mol. Med. 7, 47–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Horvai, A. E., DeVries, S., Roy, R., O'Donnell, R. J. & Waldman, F. Similarity in genetic alterations between paired well-differentiated and dedifferentiated components of dedifferentiated liposarcoma. Mod. Pathol. 22, 1477–1488 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Rosai, J. et al. Combined morphologic and karyotypic study of 59 atypical lipomatous tumors. Evaluation of their relationship and differential diagnosis with other adipose tissue tumors (a report of the CHAMP Study Group). Am. J. Surg. Pathol. 20, 1182–1189 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Snyder, E. L. et al. c-Jun amplification and overexpression are oncogenic in liposarcoma but not always sufficient to inhibit the adipocytic differentiation programme. J. Pathol. 218, 292–300 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Gregorian, C. et al. PTEN dosage is essential for neurofibroma development and malignant transformation. Proc. Natl Acad. Sci. USA 106, 19479–19484 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Subramanian, S. et al. Genome-wide transcriptome analyses reveal p53 inactivation mediated loss of miR-34a expression in malignant peripheral nerve sheath tumours. J. Pathol. 220, 58–70 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van Beerendonk, H. M. et al. Molecular analysis of the INK4A/INK4A-ARF gene locus in conventional (central) chondrosarcomas and enchondromas: indication of an important gene for tumour progression. J. Pathol. 202, 359–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Clark, M. A., Fisher, C., Judson, I. & Thomas, J. M. Soft-tissue sarcomas in adults. N. Engl. J. Med. 353, 701–711 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Mertens, F., Panagopoulos, I. & Mandahl, N. Genomic characteristics of soft tissue sarcomas. Virchows Arch. 456, 129–139 (2010).

    Article  PubMed  Google Scholar 

  15. Mani, R. S. & Chinnaiyan, A. M. Triggers for genomic rearrangements: insights into genomic, cellular and environmental influences. Nature Rev. Genet. 11, 819–829 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Novo, F. J. & Vizmanos, J. L. Chromosome translocations in cancer: computational evidence for the random generation of double-strand breaks. Trends Genet. 22, 193–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Soutoglou, E. & Misteli, T. On the contribution of spatial genome organization to cancerous chromosome translocations. J. Natl Cancer Inst. Monogr. 2008, 16–19 (2008).

    Article  CAS  Google Scholar 

  18. Hosaka, T. et al. Translin binds to the sequences adjacent to the breakpoints of the TLS and CHOP genes in liposarcomas with translocation t(12;6). Oncogene 19, 5821–5825 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Haffner, M. C. et al. Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nature Genet. 42, 668–675 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Lin, C. et al. Nuclear receptor-induced chromosomal proximity and DNA breaks underlie specific translocations in cancer. Cell 139, 1069–1083 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mani, R. S. et al. Induced chromosomal proximity and gene fusions in prostate cancer. Science 326, 1230 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deraedt, K., Debiec-Rychter, M. & Sciot, R. Radiation-associated synovial sarcoma of the lung following radiotherapy for pulmonary metastasis of Wilms' tumour. Histopathology 48, 473–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Egger, J. F., Coindre, J. M., Benhattar, J., Coucke, P. & Guillou, L. Radiation-associated synovial sarcoma: clinicopathologic and molecular analysis of two cases. Mod. Pathol. 15, 998–1004 (2002).

    Article  PubMed  Google Scholar 

  24. van de Rijn, M. et al. Radiation-associated synovial sarcoma. Hum. Pathol. 28, 1325–1328 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Ohali, A. et al. Different telomere maintenance mechanisms in alveolar and embryonal rhabdomyosarcoma. Genes Chromosomes Cancer 47, 965–970 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Ulaner, G. A. et al. Divergent patterns of telomere maintenance mechanisms among human sarcomas: sharply contrasting prevalence of the alternative lengthening of telomeres mechanism in Ewing's sarcomas and osteosarcomas. Genes Chromosomes Cancer 41, 155–162 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Lafferty-Whyte, K. et al. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT. Oncogene 28, 3765–3774 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hsu, J. J. et al. Werner syndrome gene variants in human sarcomas. Mol. Carcinog. 49, 166–174 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Meyer, S. et al. Rhabdomyosarcoma in Nijmegen breakage syndrome: strong association with perianal primary site. Cancer Genet. Cytogenet. 154, 169–174 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Hicks, M. J., Roth, J. R., Kozinetz, C. A. & Wang, L. L. Clinicopathologic features of osteosarcoma in patients with Rothmund-Thomson syndrome. J. Clin. Oncol. 25, 370–375 (2007).

    Article  PubMed  Google Scholar 

  31. Werner, S. R., Prahalad, A. K., Yang, J. & Hock, J. M. RECQL4-deficient cells are hypersensitive to oxidative stress/damage: insights for osteosarcoma prevalence and heterogeneity in Rothmund-Thomson syndrome. Biochem. Biophys. Res. Commun. 345, 403–409 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011). This paper describes a new process of cancer genome evolution: the acquisition of multiple genomic abnormalities in a single catastrophic chromothripsis event, which is characteristic of a subset of osteosarcomas and chordomas.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mitelman, F., Johansson, B. & Mertens, F. The impact of translocations and gene fusions on cancer causation. Nature Rev. Cancer 7, 233–245 (2007).

    Article  CAS  Google Scholar 

  34. Cao, L. et al. Genome-wide identification of PAX3-FKHR binding sites in rhabdomyosarcoma reveals candidate target genes important for development and cancer. Cancer Res. 70, 6497–6508 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ayalon, D., Glaser, T. & Werner, H. Transcriptional regulation of IGF-I receptor gene expression by the PAX3-FKHR oncoprotein. Growth Horm. IGF Res. 11, 289–297 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Ginsberg, J. P., Davis, R. J., Bennicelli, J. L., Nauta, L. E. & Barr, F. G. Up-regulation of MET but not neural cell adhesion molecule expression by the PAX3-FKHR fusion protein in alveolar rhabdomyosarcoma. Cancer Res. 58, 3542–3546 (1998).

    CAS  PubMed  Google Scholar 

  37. Mercado, G. E. et al. Identification of PAX3-FKHR-regulated genes differentially expressed between alveolar and embryonal rhabdomyosarcoma: focus on MYCN as a biologically relevant target. Genes Chromosomes Cancer 47, 510–520 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Tsuda, M. et al. TFE3 fusions activate MET signaling by transcriptional up-regulation, defining another class of tumors as candidates for therapeutic MET inhibition. Cancer Res. 67, 919–929 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Nagai, M., Tsuda, M., Saito, T., Lae, M. & Ladanyi, M. Functional properties of ASPL-TFE3 and identification of CYP17A1 and UPP1 as direct transcriptional targets Proc. Amer Assoc. Cancer Res. Abstr. 46, 4518 (2005).

    Google Scholar 

  40. Guillon, N. et al. The oncogenic EWS-FLI1 protein binds in vivo GGAA microsatellite sequences with potential transcriptional activation function. PLoS ONE 4, e4932 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Gangwal, K. et al. Microsatellites as EWS/FLI response elements in Ewing's sarcoma. Proc. Natl Acad. Sci. USA 105, 10149–10154 (2008). This paper illustrates the pattern of EWS–FLI1 binding to target genes, the over-representation of human promoters with GGAA microsatellites among bound genes and how these are used to regulate EWS–FLI1 target gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Boeva, V. et al. De novo motif identification improves the accuracy of predicting transcription factor binding sites in ChIP-Seq data analysis. Nucleic Acids Res. 38, e126 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kovar, H. Downstream EWS/FLI1 - upstream Ewing's sarcoma. Genome Med. 2, 8 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Yamanaka, S. & Blau, H. M. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465, 704–712 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lessnick, S. L., Dacwag, C. S. & Golub, T. R. The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell 1, 393–401 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Hu-Lieskovan, S. et al. EWS-FLI1 fusion protein up-regulates critical genes in neural crest development and is responsible for the observed phenotype of Ewing's family of tumors. Cancer Res. 65, 4633–4644 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Barr, F. G. Translocations, cancer and the puzzle of specificity. Nature Genet. 19, 121–124 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Lin, P. P., Wang, Y. & Lozano, G. Mesenchymal stem cells and the origin of Ewing's sarcoma. Sarcoma 2011, 276463 (2011).

    Article  PubMed  CAS  Google Scholar 

  50. Kauer, M. et al. A molecular function map of Ewing's sarcoma. PLoS ONE 4, e5415 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Tirode, F. et al. Mesenchymal stem cell features of Ewing tumors. Cancer Cell 11, 421–429 (2007). This study describes a pattern of gene expression on EWS–FLI1 silencing in Ewing's sarcoma cells that suggests a mesenchymal stem cell origin and demonstrates that these cells can be differentiated along a variety of lineages.

    Article  CAS  PubMed  Google Scholar 

  52. Torchia, E. C., Jaishankar, S. & Baker, S. J. Ewing tumor fusion proteins block the differentiation of pluripotent marrow stromal cells. Cancer Res. 63, 3464–3468 (2003).

    CAS  PubMed  Google Scholar 

  53. Li, X., McGee-Lawrence, M. E., Decker, M. & Westendorf, J. J. The Ewing's sarcoma fusion protein, EWS-FLI, binds Runx2 and blocks osteoblast differentiation. J. Cell. Biochem. 111, 933–943 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. Riggi, N. et al. EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev. 24, 916–932 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Riggi, N. et al. EWS-FLI-1 expression triggers a Ewing's sarcoma initiation program in primary human mesenchymal stem cells. Cancer Res. 68, 2176–2185 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Richter, G. H. et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc. Natl Acad. Sci. USA 106, 5324–5329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fujino, T. et al. Function of EWS-POU5F1 in sarcomagenesis and tumor cell maintenance. Am. J. Pathol. 176, 1973–1982 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yamaguchi, S. et al. EWSR1 is fused to POU5F1 in a bone tumor with translocation t(6;22)(p21;q12). Genes Chromosomes Cancer 43, 217–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  59. Antonescu, C. R. et al. EWSR1-POU5F1 fusion in soft tissue myoepithelial tumors. A molecular analysis of sixty-six cases, including soft tissue, bone, and visceral lesions, showing common involvement of the EWSR1 gene. Genes Chromosomes Cancer 49, 1114–1124 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Moller, E. et al. POU5F1, encoding a key regulator of stem cell pluripotency, is fused to EWSR1 in hidradenoma of the skin and mucoepidermoid carcinoma of the salivary glands. J. Pathol. 215, 78–86 (2008).

    Article  CAS  PubMed  Google Scholar 

  61. Naka, N. et al. Synovial sarcoma is a stem cell malignancy. Stem Cells 28, 1119–1131 (2010).

    CAS  PubMed  Google Scholar 

  62. Haldar, M., Hancock, J. D., Coffin, C. M., Lessnick, S. L. & Capecchi, M. R. A conditional mouse model of synovial sarcoma: insights into a myogenic origin. Cancer Cell 11, 375–388 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Haldar, M., Hedberg, M. L., Hockin, M. F. & Capecchi, M. R. A CreER-based random induction strategy for modeling translocation-associated sarcomas in mice. Cancer Res. 69, 3657–3664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ren, Y. X. et al. Mouse mesenchymal stem cells expressing PAX-FKHR form alveolar rhabdomyosarcomas by cooperating with secondary mutations. Cancer Res. 68, 6587–6597 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Riggi, N. et al. Expression of the FUS-CHOP fusion protein in primary mesenchymal progenitor cells gives rise to a model of myxoid liposarcoma. Cancer Res. 66, 7016–7023 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Agaram, N. P. et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 47, 853–859 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Heinrich, M. C. et al. PDGFRA activating mutationsin gastrointestinal stromal tumors. Science 299, 708–710 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Hirota, S. et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279, 577–580 (1998). References 66, 67 and 68 were the first to describe the three most common molecular abnormalities of therapeutic potential in GIST: mutations in KIT, PDGFRA and BRAF.

    Article  CAS  PubMed  Google Scholar 

  69. Janeway, K. A. et al. Pediatric KIT wild-type and platelet-derived growth factor receptor α-wild-type gastrointestinal stromal tumors share KIT activation but not mechanisms of genetic progression with adult gastrointestinal stromal tumors. Cancer Res. 67, 9084–9088 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Pasini, B. et al. Clinical and molecular genetics of patients with the Carney-Stratakis syndrome and germline mutations of the genes coding for the succinate dehydrogenase subunits SDHB, SDHC, and SDHD. Eur. J. Hum. Genet. 16, 79–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Maertens, O. et al. Molecular pathogenesis of multiple gastrointestinal stromal tumors in NF1 patients. Hum. Mol. Genet. 15, 1015–1023 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Mussi, C., Schildhaus, H. U., Gronchi, A., Wardelmann, E. & Hohenberger, P. Therapeutic consequences from molecular biology for gastrointestinal stromal tumor patients affected by neurofibromatosis type 1. Clin. Cancer Res. 14, 4550–4555 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Antonescu, C. R. et al. KDR activating mutations in human angiosarcomas are sensitive to specific kinase inhibitors. Cancer Res. 69, 7175–7179 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Barretina, J. et al. Subtype-specific genomic alterations define new targets for soft-tissue sarcoma therapy. Nature Genet. 42, 715–721 (2010). This paper describes the integrative genomic analysis of seven subtypes of sarcoma and pinpoints potential targets of therapy.

    Article  CAS  PubMed  Google Scholar 

  75. Ito, M. et al. Comprehensive mapping of p53 pathway alterations reveals an apparent role for both SNP309 and MDM2 amplification in sarcomagenesis. Clin. Cancer Res. 17, 416–426 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. Perot, G. et al. Constant p53 pathway inactivation in a large series of soft tissue sarcomas with complex genetics. Am. J. Pathol. 177, 2080–2090 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Huang, H. Y. et al. Ewing sarcomas with p53 mutation or p16/p14ARF homozygous deletion: a highly lethal subset associated with poor chemoresponse. J. Clin. Oncol. 23, 548–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  78. Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chibon, F. et al. Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity. Nature Med. 16, 781–787 (2010). This study develops a prognostic signature of genes that reflects the complexity of sarcomas, predicts for metastasis outcome that is superior to conventional sarcoma grading, and can distinguish low-risk and high-risk patients in other malignancies.

    Article  CAS  PubMed  Google Scholar 

  80. El-Rifai, W., Sarlomo-Rikala, M., Andersson, L. C., Knuutila, S. & Miettinen, M. DNA sequence copy number changes in gastrointestinal stromal tumors: tumor progression and prognostic significance. Cancer Res. 60, 3899–3903 (2000).

    CAS  PubMed  Google Scholar 

  81. Ylipaa, A. et al. Integrative genomic characterization and a genomic staging system for gastrointestinal stromal tumors. Cancer 117, 380–389 (2011).

    Article  CAS  PubMed  Google Scholar 

  82. Pedeutour, F. et al. Structure of the supernumerary ring and giant rod chromosomes in adipose tissue tumors. Genes Chromosomes Cancer 24, 30–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  83. Sirvent, N. et al. Detection of MDM2-CDK4 amplification by fluorescence in situ hybridization in 200 paraffin-embedded tumor samples: utility in diagnosing adipocytic lesions and comparison with immunohistochemistry and real-time PCR. Am. J. Surg. Pathol. 31, 1476–1489 (2007).

    Article  PubMed  Google Scholar 

  84. Muller, C. R. et al. Potential for treatment of liposarcomas with the MDM2 antagonist Nutlin-3A. Int. J. Cancer 121, 199–205 (2007).

    Article  CAS  PubMed  Google Scholar 

  85. Singer, S. et al. Gene expression profiling of liposarcoma identifies distinct biological types/subtypes and potential therapeutic targets in well-differentiated and dedifferentiated liposarcoma. Cancer Res. 67, 6626–6636 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Helias-Rodzewicz, Z., Pedeutour, F., Coindre, J. M., Terrier, P. & Aurias, A. Selective elimination of amplified CDK4 sequences correlates with spontaneous adipocytic differentiation in liposarcoma. Genes Chromosomes Cancer 48, 943–952 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Mayr, C., Hemann, M. T. & Bartel, D. P. Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation. Science 315, 1576–1579 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Atiye, J. et al. Gene amplifications in osteosarcoma-CGH microarray analysis. Genes Chromosomes Cancer 42, 158–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Chibon, F. et al. ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous histiocytomas with 12q14-q15 and 6q23 amplifications. Genes Chromosomes Cancer 40, 32–37 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Heidenblad, M. et al. Genomic profiling of bone and soft tissue tumors with supernumerary ring chromosomes using tiling resolution bacterial artificial chromosome microarrays. Oncogene 25, 7106–7116 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Mariani, O. et al. JUN oncogene amplification and overexpression block adipocytic differentiation in highly aggressive sarcomas. Cancer Cell 11, 361–374 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Helias-Rodzewicz, Z. et al. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosomes Cancer 49, 1161–1171 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Idbaih, A. et al. Myxoid malignant fibrous histiocytoma and pleomorphic liposarcoma share very similar genomic imbalances. Lab. Invest. 85, 176–181 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Gibault, L. et al. New insights in sarcoma oncogenesis: a comprehensive analysis of a large series of 160 soft tissue sarcomas with complex genomics. J. Pathol. 223, 64–71 (2010).

    Article  PubMed  CAS  Google Scholar 

  95. Adamowicz, M. et al. Frequent amplifications and abundant expression of TRIO, NKD2, and IRX2 in soft tissue sarcomas. Genes Chromosomes Cancer 45, 829–838 (2006).

    Article  CAS  PubMed  Google Scholar 

  96. McDermott, K. M. et al. p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol. 4, e51 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Shen, W. H. et al. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128, 157–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Meza-Zepeda, L. A. et al. Array comparative genomic hybridization reveals distinct DNA copy number differences between gastrointestinal stromal tumors and leiomyosarcomas. Cancer Res. 66, 8984–8993 (2006).

    Article  CAS  PubMed  Google Scholar 

  99. Beck, A. H. et al. Discovery of molecular subtypes in leiomyosarcoma through integrative molecular profiling. Oncogene 29, 845–854 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Kimura, Y., Morita, T., Hayashi, K., Miki, T. & Sobue, K. Myocardin functions as an effective inducer of growth arrest and differentiation in human uterine leiomyosarcoma cells. Cancer Res. 70, 501–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Perot, G. et al. Strong smooth muscle differentiation is dependent on myocardin gene amplification in most human retroperitoneal leiomyosarcomas. Cancer Res. 69, 2269–2278 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Garraway, L. A. & Sellers, W. R. Lineage dependency and lineage-survival oncogenes in human cancer. Nature Rev. Cancer 6, 593–602 (2006).

    Article  CAS  Google Scholar 

  103. Bignell, G. R. et al. Signatures of mutation and selection in the cancer genome. Nature 463, 893–898 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Sharma, S. V., Haber, D. A. & Settleman, J. Cell line-based platforms to evaluate the therapeutic efficacy of candidate anticancer agents. Nature Rev. Cancer 10, 241–253 (2010).

    Article  CAS  Google Scholar 

  105. Luo, B. et al. Highly parallel identification of essential genes in cancer cells. Proc. Natl Acad. Sci. USA 105, 20380–20385 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Johannessen, C. M. et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468, 968–972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Macarulla, T. et al. Phase I study of the selective Aurora A kinase inhibitor MLN8054 in patients with advanced solid tumors: safety, pharmacokinetics, and pharmacodynamics. Mol. Cancer Ther. 9, 2844–2852 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Rui, L. et al. Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18, 590–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Vaira, V. et al. Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc. Natl Acad. Sci. USA 107, 8352–8356 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Martinez, N. et al. Transcriptional signature of Ecteinascidin 743 (Yondelis, Trabectedin) in human sarcoma cells explanted from chemo-naive patients. Mol. Cancer Ther. 4, 814–823 (2005).

    Article  CAS  PubMed  Google Scholar 

  112. Peng, T. et al. An experimental model for the study of well-differentiated and dedifferentiated liposarcoma; deregulation of targetable tyrosine kinase receptors. Lab. Invest. 91, 392–403 (2011).

    Article  CAS  PubMed  Google Scholar 

  113. Frapolli, R. et al. Novel models of myxoid liposarcoma xenografts mimicking the biological and pharmacologic features of human tumors. Clin. Cancer Res. 16, 4958–4967 (2010).

    Article  CAS  PubMed  Google Scholar 

  114. Hernando, E. et al. The AKT-mTOR pathway plays a critical role in the development of leiomyosarcomas. Nature Med. 13, 748–753 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Kirsch, D. G. et al. A spatially and temporally restricted mouse model of soft tissue sarcoma. Nature Med. 13, 992–997 (2007).

    Article  CAS  PubMed  Google Scholar 

  116. Keller, C. et al. Alveolar rhabdomyosarcomas in conditional Pax3:Fkhr mice: cooperativity of Ink4a/ARF and Trp53 loss of function. Genes Dev. 18, 2614–2626 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Perez-Losada, J. et al. The chimeric FUS/TLS-CHOP fusion protein specifically induces liposarcomas in transgenic mice. Oncogene 19, 2413–2422 (2000).

    Article  CAS  PubMed  Google Scholar 

  118. Sommer, G. et al. Gastrointestinal stromal tumors in a mouse model by targeted mutation of the Kit receptor tyrosine kinase. Proc. Natl Acad. Sci. USA 100, 6706–6711 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rubin, B. P. et al. A knock-in mouse model of gastrointestinal stromal tumor harboring kit K641E. Cancer Res. 65, 6631–6639 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Zender, L. et al. An oncogenomics-based in vivo RNAi screen identifies tumor suppressors in liver cancer. Cell 135, 852–864 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Bric, A. et al. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell 16, 324–335 (2009). References 120 and 121 describe the application of RNAi screening to in vivo models of cancer for the functional annotation of cancer genomes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Meacham, C. E., Ho, E. E., Dubrovsky, E., Gertler, F. B. & Hemann, M. T. In vivo RNAi screening identifies regulators of actin dynamics as key determinants of lymphoma progression. Nature Genet. 41, 1133–1137 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. Dodd, R. D., Mito, J. K. & Kirsch, D. G. Animal models of soft-tissue sarcoma. Dis. Model Mech. 3, 557–566 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schreiber, S. L. et al. Towards patient-based cancer therapeutics. Nature Biotech. 28, 904–906 (2010).

    Article  CAS  Google Scholar 

  125. Pao, W. & Chmielecki, J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nature Rev. Cancer 10, 760–774 (2010).

    Article  CAS  Google Scholar 

  126. Heinrich, M. C. et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol. 21, 4342–4349 (2003).

    Article  CAS  PubMed  Google Scholar 

  127. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Flaherty, K. T. et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N. Engl. J. Med. 363, 809–819 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Maki, R. G. et al. Phase II study of sorafenib in patients with metastatic or recurrent sarcomas. J. Clin. Oncol. 27, 3133–3140 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sleijfer, S. et al. Pazopanib, a multikinase angiogenesis inhibitor, in patients with relapsed or refractory advanced soft tissue sarcoma: a phase II study from the European organisation for research and treatment of cancer-soft tissue and bone sarcoma group (EORTC study 62043). J. Clin. Oncol. 27, 3126–3132 (2009).

    Article  CAS  PubMed  Google Scholar 

  131. Pappo, A. et al. Activity of R1507, a monoclonal antibody to the insulin-like growth factor-1 receptor, in patients with recurrent or refractory Ewing's sarcoma family of tumors: results of a phase II SARC study. J. Clin. Oncol. Abstr. 28, 10000 (2010).

    Article  Google Scholar 

  132. Maki, R. G., Awan, R. A., Dixon, R. H., Jhanwar, S. & Antonescu, C. R. Differential sensitivity to imatinib of 2 patients with metastatic sarcoma arising from dermatofibrosarcoma protuberans. Int. J. Cancer 100, 623–626 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. McArthur, G. A. et al. Molecular and clinical analysis of locally advanced dermatofibrosarcoma protuberans treated with imatinib: Imatinib Target Exploration Consortium Study B2225. J. Clin. Oncol. 23, 866–873 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Davis, I. J. et al. Oncogenic MITF dysregulation in clear cell sarcoma: defining the MiT family of human cancers. Cancer Cell 9, 473–484 (2006).

    Article  CAS  PubMed  Google Scholar 

  135. McGill, G. G., Haq, R., Nishimura, E. K. & Fisher, D. E. c-Met expression is regulated by Mitf in the melanocyte lineage. J. Biol. Chem. 281, 10365–10373 (2006).

    Article  CAS  PubMed  Google Scholar 

  136. Mosse, Y. P., Wood, A. & Maris, J. M. Inhibition of ALK signaling for cancer therapy. Clin. Cancer Res. 15, 5609–5614 (2009).

    Article  CAS  PubMed  Google Scholar 

  137. Kolb, E. A. & Gorlick, R. Development of IGF-IR inhibitors in pediatric sarcomas. Curr. Oncol. Rep. 11, 307–313 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Scotlandi, K. et al. Insulin-like growth factor I receptor-mediated circuit in Ewing's sarcoma/peripheral neuroectodermal tumor: a possible therapeutic target. Cancer Res. 56, 4570–4574 (1996).

    CAS  PubMed  Google Scholar 

  139. Tolcher, A. W. et al. Phase I, pharmacokinetic, and pharmacodynamic study of AMG 479, a fully human monoclonal antibody to insulin-like growth factor receptor 1. J. Clin. Oncol. 27, 5800–5807 (2009).

    Article  CAS  PubMed  Google Scholar 

  140. Kurzrock, R. et al. A phase I study of weekly R1507, a human monoclonal antibody insulin-like growth factor-I receptor antagonist, in patients with advanced solid tumors. Clin. Cancer Res. 16, 2458–2465 (2010).

    Article  CAS  PubMed  Google Scholar 

  141. Olmos, D. et al. Safety, pharmacokinetics, and preliminary activity of the anti-IGF-1R antibody figitumumab (CP-751,871) in patients with sarcoma and Ewing's sarcoma: a phase 1 expansion cohort study. Lancet Oncol. 11, 129–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  142. Gualberto, A. et al. Pre-treatment levels of circulating free IGF-1 identify NSCLC patients who derive clinical benefit from figitumumab. Br. J. Cancer 104, 68–74 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. Park, M. S., Ravi, V. & Araujo, D. M. Inhibiting the VEGF-VEGFR pathway in angiosarcoma, epithelioid hemangioendothelioma, and hemangiopericytoma/solitary fibrous tumor. Curr. Opin. Oncol. 22, 351–355 (2010).

    Article  CAS  PubMed  Google Scholar 

  144. Gardner, K., Leahy, M., Alvarez-Gutierrez, M., Judson, I. & Scurr, M. Activity of the VEGFR/KIT tyrosine kinase inhibitor cediranib (AZD2171) in alveolar soft part sarcoma. Proc.Connect. Tissue Oncol. Soc. Abstr. 34936 (2008).

  145. Stacchiotti, S. et al. Response to sunitinib malate in advanced alveolar soft part sarcoma. Clin. Cancer Res. 15, 1096–1104 (2009).

    Article  CAS  PubMed  Google Scholar 

  146. Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N. Engl. J. Med. 358, 140–151 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Taille, C., Debray, M. P. & Crestani, B. Sirolimus treatment for pulmonary lymphangioleiomyomatosis. Ann. Intern. Med. 146, 687–688 (2007).

    Article  PubMed  Google Scholar 

  148. Wagner, A. J. et al. Clinical activity of mTOR inhibition with sirolimus in malignant perivascular epithelioid cell tumors: targeting the pathogenic activation of mTORC1 in tumors. J. Clin. Oncol. 28, 835–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Cichowski, K., Santiago, S., Jardim, M., Johnson, B. W. & Jacks, T. Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev. 17, 449–454 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Johannessen, C. M. et al. The NF1 tumor suppressor critically regulates TSC2 and mTOR. Proc. Natl Acad. Sci. USA 102, 8573–8578 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Forni, C. et al. Trabectedin (ET-743) promotes differentiation in myxoid liposarcoma tumors. Mol. Cancer Ther. 8, 449–457 (2009).

    Article  CAS  PubMed  Google Scholar 

  152. Grosso, F. et al. Trabectedin in myxoid liposarcomas (MLS): a long-term analysis of a single-institution series. Ann. Oncol. 20, 1439–1444 (2009).

    Article  CAS  PubMed  Google Scholar 

  153. Minuzzo, M. et al. Selective effects of the anticancer drug Yondelis (ET-743) on cell-cycle promoters. Mol. Pharmacol. 68, 1496–1503 (2005).

    Article  CAS  PubMed  Google Scholar 

  154. Martinez-Serra, J. et al. Yondelis® (ET-743, Trabectedin) sensitizes cancer cell lines to CD95-mediated cell death: new molecular insight into the mechanism of action. Eur. J. Pharmacol. 658, 57–64 (2011).

    Article  CAS  PubMed  Google Scholar 

  155. Schoffski, P. et al. Predictive impact of DNA repair functionality on clinical outcome of advanced sarcoma patients treated with trabectedin: a retrospective multicentric study. Eur. J. Cancer 47, 1006–1012 (2011).

    Article  CAS  PubMed  Google Scholar 

  156. Gramza, A. W., Corless, C. L. & Heinrich, M. C. Resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumors. Clin. Cancer Res. 15, 7510–7518 (2009).

    Article  CAS  PubMed  Google Scholar 

  157. Heinrich, M. C. et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J. Clin. Oncol. 24, 4764–4774 (2006).

    Article  CAS  PubMed  Google Scholar 

  158. Antonescu, C. R. et al. Acquired resistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation. Clin. Cancer Res. 11, 4182–4190 (2005).

    Article  CAS  PubMed  Google Scholar 

  159. Guo, T. et al. Mechanisms of sunitinib resistance in gastrointestinal stromal tumors harboring KITAY502–503ins mutation: an in vitro mutagenesis screen for drug resistance. Clin. Cancer Res. 15, 6862–6870 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Huang, F. et al. The mechanisms of differential sensitivity to an insulin-like growth factor-1 receptor inhibitor (BMS-536924) and rationale for combining with EGFR/HER2 inhibitors. Cancer Res. 69, 161–170 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Potratz, J. C. et al. Synthetic lethality screens reveal RPS6 and MST1R as modifiers of insulin-like growth factor-1 receptor inhibitor activity in childhood sarcomas. Cancer Res. 70, 8770–8781 (2010).

    Article  CAS  PubMed  Google Scholar 

  162. Kantarjian, H. et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl. J. Med. 362, 2260–2270 (2010).

    Article  CAS  PubMed  Google Scholar 

  163. Heinrich, M. C. et al. In vitro activity of novel KIT/PDGFRA switch pocket kinase inhibitors against mutations associated with drug-resistant GI stromal tumors. J. Clin. Oncol. Abstr. 28, 10007 (2010).

    Article  Google Scholar 

  164. Smith, J. R. & Workman, P. Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Cell Cycle 8, 362–372 (2009).

    Article  CAS  PubMed  Google Scholar 

  165. Cutforth, T. & Rubin, G. M. Mutations in Hsp83 and cdc37 impair signaling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77, 1027–1036 (1994).

    Article  CAS  PubMed  Google Scholar 

  166. Stepanova, L., Leng, X., Parker, S. B. & Harper, J. W. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 10, 1491–502 (1996).

    Article  CAS  PubMed  Google Scholar 

  167. Knight, Z. A., Lin, H. & Shokat, K. M. Targeting the cancer kinome through polypharmacology. Nature Rev. Cancer 10, 130–137 (2010).

    Article  CAS  Google Scholar 

  168. Dunker, A. K. & Uversky, V. N. Drugs for 'protein clouds': targeting intrinsically disordered transcription factors. Curr. Opin. Pharmacol. 10, 782–788 (2010).

    Article  CAS  PubMed  Google Scholar 

  169. Koehler, A. N. A complex task? Direct modulation of transcription factors with small molecules. Curr. Opin. Chem. Biol. 14, 331–340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Erkizan, H. V. et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing's sarcoma. Nature Med. 15, 750–756 (2009). The paper describes the first small-molecule inhibitor that directly targets an oncogenic chimeric transcription factor in sarcomas.

    Article  CAS  PubMed  Google Scholar 

  171. Taulli, R. et al. Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Res. 66, 4742–4749 (2006).

    Article  CAS  PubMed  Google Scholar 

  172. Davis, I. J. et al. Identification of the receptor tyrosine kinase c-Met and its ligand, hepatocyte growth factor, as therapeutic targets in clear cell sarcoma. Cancer Res. 70, 639–645 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ban, J. et al. EWS-FLI1 suppresses NOTCH-activated p53 in Ewing's sarcoma. Cancer Res. 68, 7100–7109 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Beauchamp, E. et al. GLI1 is a direct transcriptional target of EWS-FLI1 oncoprotein. J. Biol. Chem. 284, 9074–9082 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Zwerner, J. P. et al. The EWS/FLI1 oncogenic transcription factor deregulates GLI1. Oncogene 27, 3282–3291 (2008).

    Article  CAS  PubMed  Google Scholar 

  176. Navarro, D., Agra, N., Pestana, A., Alonso, J. & Gonzalez-Sancho, J. M. The EWS/FLI1 oncogenic protein inhibits expression of the Wnt inhibitor DICKKOPF-1 gene and antagonizes β-catenin/TCF-mediated transcription. Carcinogenesis 31, 394–401 (2010).

    Article  CAS  PubMed  Google Scholar 

  177. Hahm, K. B. Repression of the gene encoding the TGF-β type II receptor is a major target of the EWS-FLI1 oncoprotein. Nature Genet. 23, 481 (1999).

    Article  PubMed  CAS  Google Scholar 

  178. Im, Y. H. et al. EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor β type II receptor gene. Cancer Res. 60, 1536–1540 (2000).

    CAS  PubMed  Google Scholar 

  179. Herrero-Martin, D. et al. Stable interference of EWS-FLI1 in an Ewing sarcoma cell line impairs IGF-1/IGF-1R signalling and reveals TOPK as a new target. Br. J. Cancer 101, 80–90 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Cironi, L. et al. IGF1 is a common target gene of Ewing's sarcoma fusion proteins in mesenchymal progenitor cells. PLoS ONE 3, e2634 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Prieur, A., Tirode, F., Cohen, P. & Delattre, O. EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol. Cell. Biol. 24, 7275–7283 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Maki, R. G. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J. Clin. Oncol. 28, 4985–4995 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Toretsky, J. A. & Gorlick, R. IGF-1R targeted treatment of sarcoma. Lancet Oncol. 11, 105–106 (2010).

    Article  PubMed  Google Scholar 

  184. Goransson, M. et al. The myxoid liposarcoma FUS-DDIT3 fusion oncoprotein deregulates NF-κB target genes by interaction with NFKBIZ. Oncogene 28, 270–278 (2009).

    Article  CAS  PubMed  Google Scholar 

  185. Willems, S. M. et al. Kinome profiling of myxoid liposarcoma reveals NF-κB-pathway kinase activity and casein kinase II inhibition as a potential treatment option. Mol. Cancer 9, 257 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Malumbres, M. & Barbacid, M. Cell cycle, CDKs and cancer: a changing paradigm. Nature Rev. Cancer 9, 153–166 (2009).

    Article  CAS  Google Scholar 

  187. Ashley, E. A. et al. Clinical assessment incorporating a personal genome. Lancet 375, 1525–1535 (2010). This paper illustrates the possibility of translating an individual's genome sequence, inferred risk and familial context into clinical utility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Meyerson, M., Gabriel, S. & Getz, G. Advances in understanding cancer genomes through second-generation sequencing. Nature Rev. Genet. 11, 685–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  189. Maher, C. A. et al. Transcriptome sequencing to detect gene fusions in cancer. Nature 458, 97–101 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Maher, C. A. et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc. Natl Acad. Sci. USA 106, 12353–12358 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Post, S. M. et al. A high-frequency regulatory polymorphism in the p53 pathway accelerates tumor development. Cancer Cell 18, 220–230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Beroukhim, R. et al. Assessing the significance of chromosomal aberrations in cancer: methodology and application to glioma. Proc. Natl Acad. Sci. USA 104, 20007–20012 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Taylor, B. S. et al. Functional copy-number alterations in cancer. PLoS ONE 3, e3179 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Shen, R., Olshen, A. B. & Ladanyi, M. Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25, 2906–2912 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Akavia, U. D. et al. An integrated approach to uncover drivers of cancer. Cell 143, 1005–1017 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chi, P. et al. ETV1 is a lineage survival factor that cooperates with KIT in gastrointestinal stromal tumours. Nature 467, 849–853 (2010). This paper describes the cellular context-dependent cooperation of the ETS family transcription factor ETV1 with mutant KIT in interstitial cells of Cajal, the cells of origin of GISTs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Errani, C. et al. A novel WWTR1-CAMTA1 gene fusion is a consistent abnormality in epithelioid hemangioendothelioma of different anatomic sites. Genes Chromosom. Cancer 50, 644–653 (2011).

    Article  CAS  PubMed  Google Scholar 

  198. Wang, L. et al. Identification of a novel, recurrent HEY1-NCOA2 fusion in mesenchymal chondrosarcoma based on a genome-wide screen of exon-level expression data. Genes Chromosom. Cancer (in the press).

  199. Amary, M. F. et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J. Pathol. 224, 334–343 (2011). Somatic mutations in isocitrate dehydrogenase 1 ( IDH1 ) and IDH2 , first discovered in gliomas and then in acute myeloid leukaemias, are reported here for the first time in a sarcoma. Given that mutant IDH alleles have been causally associated with global DNA hypermethylation, this raises the possibility of widespread epigenetic changes in a subset of chondrosarcomas.

    Article  CAS  PubMed  Google Scholar 

  200. Blay, J. Y., El Sayadi, H., Thiesse, P., Garret, J. & Ray-Coquard, I. Complete response to imatinib in relapsing pigmented villonodular synovitis/tenosynovial giant cell tumor (PVNS/TGCT). Ann. Oncol. 19, 821–822 (2008).

    Article  PubMed  Google Scholar 

  201. Antonescu, C. R. The GIST paradigm: lessons for other kinase-driven cancers. J. Pathol. 223, 251–261 (2011).

    Article  CAS  PubMed  Google Scholar 

  202. Skubitz, K. M., Manivel, J. C., Clohisy, D. R. & Frolich, J. W. Response of imatinib-resistant extra-abdominal aggressive fibromatosis to sunitinib: case report and review of the literature on response to tyrosine kinase inhibitors. Cancer Chemother. Pharmacol. 64, 635–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  203. Gounder, M. et al. Activity of sorafenib against desmoid tumor/deep fibromatoses. Clin. Cancer Res. 29 Mar 2011 (doi: 10.1158/1078-0432.CCR-10-3322).

  204. Thomas, D. et al. Denosumab in patients with giant-cell tumour of bone: an open-label, phase 2 study. Lancet Oncol. 11, 275–280 (2010).

    Article  CAS  PubMed  Google Scholar 

  205. Butrynski, J. E. et al. Crizotinib in ALK-rearranged inflammatory myofibroblastic tumor. N. Engl. J. Med. 363, 1727–1733 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Goldberg, J. et al. Preliminary results from a phase II study of ARQ 197 in patients with microphthalmia transcription factor family (MiT)-associated tumors. J. Clin. Oncol. Abstr. 27, 10502 (2009).

    Google Scholar 

  207. Quek, R. et al. Combination mTOR and IGF-1R inhibition: phase I trial of everolimus and figitumumab in patients with advanced sarcomas and other solid tumors. Clin. Cancer Res. 17, 871–879 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. Stacchiotti, S. et al. Sunitinib malate and figitumumab in solitary fibrous tumor: patterns and molecular bases of tumor response. Mol. Cancer Ther. 9, 1286–1297 (2010).

    Article  CAS  PubMed  Google Scholar 

  209. Agulnik, M. et al. An open-label multicenter phase II study of bevacizumab for the treatment of angiosarcoma. J. Clin. Oncol. Abstr. 27, 10522 (2009).

    Google Scholar 

Download references

Acknowledgements

The authors apologize to the many authors whose relevant work they were unable to cite here owing to space limitations. They thank N. Schultz for providing pathway expertise, C.D.M. Fletcher for critical reading, and M. Meyerson and C. Sander for advice and support. This work was supported in part by The Soft Tissue Sarcoma Program Project (P01 CA047179 to S.S., M.L. and C.R.A.) and the SPORE in Soft Tissue Sarcoma (P50 CA140146-01 to S.S., M.L., C.R.A. and B.S.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Ladanyi.

Ethics declarations

Competing interests

R.G.M. is a member of the advisory board of Novartis, Eisai, GlaxoSmithKline and Lilly, and has research support from Pfizer, Roche and Eisai. The other authors declare no competing financial interests.

Related links

Glossary

Translocations

Structural rearrangement that juxtaposes distant genome sequences, resulting in aberrant gene expression or modified regulatory control of a gene (promoter substitution) or the formation of a fusion gene that encodes an aberrant, chimeric protein (gene fusion). Pathognomonic translocations have more than diagnostic use, they are also the defining feature of the given tumour type.

Myogenic

Originating in, or with expression specific to, muscular tissues.

Karyotypically complex

Tumours with a complex karyotype are those with numerical and structural abnormalities affecting multiple chromosomes in the nuclear genome.

Chromothripsis

A neologism coined to describe a proposed single catastrophic remodelling of a chromosome and its accompanying punctuated model of somatic cancer evolution.

Second-generation sequencing

Sequencing methods and associated chemistries that sequence >106 nucleic acid fragments in parallel, producing short reads of 35–400 bases. Used here synonymously with next-generation or massively parallel sequencing.

Paired-end (or mate-paired) sequencing

A technique whereby a library of genomic DNA or double-stranded cDNA is created and circularized, and then short stretches (35–400 bp) are sequenced from either end of the cleaved product, but not the intervening variable-length fragment (from 200–500 bp to 3–10 kb).

RNA interference

A technique for sequence-specific gene silencing in which small non-coding RNAs (principally microRNAs and small interfering RNAs (siRNAs)) and associated regulatory complexes pair with complementary mRNA targets.

Neuroectodermal

Of the neuroectoderm, including neural crest and neural tube cell types.

Carney's triad

A rare syndrome in which there is a coexistence of three distinct tumour types: GIST, extra-adrenal paraganglioma and pulmonary chondromas.

Carney–Stratakis syndrome

Distinct from Carney's triad, and also referred to as the GIST-paraganglioma dyad, a heritable syndrome in which familial mutations are associated with coexisting GIST and paraganglioma, but not pulmonary chondromas.

Neurofibromatosis type I

An autosomal dominant genetic disorder in which tumours arise from nerve tissues and from all neural crest cell types.

Paraganglioma

An uncommon neuroendocrine tumour arising from the sympathetic component of the autonomic nervous system and found predominantly in the abdomen, chest or head and neck region.

Disease-specific survival

Patients with a given diagnosis who do not die of the specified disease in a defined period of time, which excludes patients who died from causes other than the studied disease.

Response

Used here as defined by response evaluation criteria in solid tumours (RECIST) criteria. The RECIST criteria are guidelines developed to document a change in tumour burden and similarly monitor response to treatment during the clinical evaluation of cancer therapeutics.

ORFeome

A collection of cloned human protein-coding open reading frames (ORFs) suitable for stable expression via destination vectors in model systems (see Further information).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, B., Barretina, J., Maki, R. et al. Advances in sarcoma genomics and new therapeutic targets. Nat Rev Cancer 11, 541–557 (2011). https://doi.org/10.1038/nrc3087

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3087

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer