Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Programmed cell removal: a new obstacle in the road to developing cancer

Abstract

The development of cancer involves mechanisms by which aberrant cells overcome normal regulatory pathways that limit their numbers and their migration. The evasion of programmed cell death is one of several key early events that need to be overcome in the progression from normal cellular homeostasis to malignant transformation. Recently, we provided evidence in mouse and human cancers that successful cancer clones must also overcome programmed cell removal. In this Opinion article, we explore the role of programmed cell removal in both normal and neoplastic cells, and we place this pathway in the context of the initiation of programmed cell death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The step-wise process of programmed cell removal.
Figure 2: Evasion of both programmed cell death and programmed cell removal pathways leads to cancer evolution.
Figure 3: Putative stimuli leading to the induction of cell surface calreticulin.

Similar content being viewed by others

References

  1. Cotter, T. G. Apoptosis and cancer: the genesis of a research field. Nature Rev. Cancer 9, 501–507 (2009).

    Article  CAS  Google Scholar 

  2. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Lagasse, E. & Weissman, I. L. bcl-2 inhibits apoptosis of neutrophils but not their engulfment by macrophages. J. Exp. Med. 179, 1047–1052 (1994).

    Article  CAS  PubMed  Google Scholar 

  4. Ravichandran, K. S. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity 35, 445–455 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gregory, C. D. & Pound, J. D. Cell death in the neighbourhood: direct microenvironmental effects of apoptosis in normal and neoplastic tissues. J. Pathol. 223, 177–194 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Lauber, K., Blumenthal, S. G., Waibel, M. & Wesselborg, S. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell 14, 277–287 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Truman, L. A. et al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood 112, 5026–5036 (2008).

    Article  CAS  PubMed  Google Scholar 

  8. Lauber, K. et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 113, 717–730 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Elliott, M. R. et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 461, 282–286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chekeni, F. B. et al. Pannexin 1 channels mediate 'find-me' signal release and membrane permeability during apoptosis. Nature 467, 863–867 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koizumi, S. et al. UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446, 1091–1095 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ravichandran, K. S. & Lorenz, U. Engulfment of apoptotic cells: signals for a good meal. Nature Rev. Immunol. 7, 964–974 (2007).

    Article  CAS  Google Scholar 

  13. Bournazou, I. et al. Apoptotic human cells inhibit migration of granulocytes via release of lactoferrin. J. Clin. Invest. 119, 20–32 (2009).

    CAS  PubMed  Google Scholar 

  14. Elliott, M. R. & Ravichandran, K. S. Clearance of apoptotic cells: implications in health and disease. J. Cell Biol. 189, 1059–1070 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Savill, J., Dransfield, I., Gregory, C. & Haslett, C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nature Rev. Immunol. 2, 965–975 (2002).

    Article  CAS  Google Scholar 

  16. Ravichandran, K. S. Find-me and eat-me signals in apoptotic cell clearance: progress and conundrums. J. Exp. Med. 207, 1807–1817 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devitt, A. & Marshall, L. J. The innate immune system and the clearance of apoptotic cells. J. Leukoc. Biol. 90, 447–457 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Dini, L., Autuori, F., Lentini, A., Oliverio, S. & Piacentini, M. The clearance of apoptotic cells in the liver is mediated by the asialoglycoprotein receptor. FEBS Lett. 296, 174–178 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Watanabe, Y., Shiratsuchi, A., Shimizu, K., Takizawa, T. & Nakanishi, Y. Role of phosphatidylserine exposure and sugar chain desialylation at the surface of influenza virus-infected cells in efficient phagocytosis by macrophages. J. Biol. Chem. 277, 18222–18228 (2002).

    Article  CAS  PubMed  Google Scholar 

  20. Shiratsuchi, A., Watanabe, I., Ju, J. S., Lee, B. L. & Nakanishi, Y. Bridging effect of recombinant human mannose-binding lectin in macrophage phagocytosis of Escherichia coli. Immunology 124, 575–583 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mevorach, D., Mascarenhas, J. O., Gershov, D. & Elkon, K. B. Complement-dependent clearance of apoptotic cells by human macrophages. J. Exp. Med. 188, 2313–2320 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ogden, C. A. et al. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J. Exp. Med. 194, 781–795 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fadok, V. A., Bratton, D. L., Frasch, S. C., Warner, M. L. & Henson, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5, 551–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Savill, J. & Fadok, V. Corpse clearance defines the meaning of cell death. Nature 407, 784–788 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Henson, P. M., Bratton, D. L. & Fadok, V. A. Apoptotic cell removal. Curr. Biol. 11, R795–R805 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Arur, S. et al. Annexin I is an endogenous ligand that mediates apoptotic cell engulfment. Dev. Cell 4, 587–598 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Gardai, S. J. et al. Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123, 321–334 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Fadok, V. A. et al. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J. Immunol. 149, 4029–4035 (1992).

    CAS  PubMed  Google Scholar 

  29. Brown, S. et al. Apoptosis disables CD31-mediated cell detachment from phagocytes promoting binding and engulfment. Nature 418, 200–203 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Knepper-Nicolai, B., Savill, J. & Brown, S. B. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J. Biol. Chem. 273, 30530–30536 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Barclay, A. N., Wright, G. J., Brooke, G. & Brown, M. H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol. 23, 285–290 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Kawasaki, B. T. & Farrar, W. L. Cancer stem cells, CD200 and immunoevasion. Trends Immunol. 29, 464–468 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Koning, N., Swaab, D. F., Hoek, R. M. & Huitinga, I. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J. Neuropathol. Exp. Neurol. 68, 159–167 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Hoek, R. M. et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 290, 1768–1771 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Copland, D. A. et al. Monoclonal antibody-mediated CD200 receptor signaling suppresses macrophage activation and tissue damage in experimental autoimmune uveoretinitis. Am. J. Pathol. 171, 580–588 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Park, Y. J. et al. PAI-1 inhibits neutrophil efferocytosis. Proc. Natl Acad. Sci. USA 105, 11784–11789 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bajou, K. et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell 14, 324–334 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chan, J. C., Duszczyszyn, D. A., Castellino, F. J. & Ploplis, V. A. Accelerated skin wound healing in plasminogen activator inhibitor-1-deficient mice. Am. J. Pathol. 159, 1681–1688 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fay, W. P., Garg, N. & Sunkar, M. Vascular functions of the plasminogen activation system. Arterioscler. Thromb. Vasc. Biol. 27, 1231–1237 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Tsai, R. K. & Discher, D. E. Inhibition of “self” engulfment through deactivation of myosin-II at the phagocytic synapse between human cells. J. Cell Biol. 180, 989–1003 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reinhold, M. I. et al. In vivo expression of alternatively spliced forms of integrin-associated protein (CD47). J. Cell Sci. 108, 3419–3425 (1995).

    CAS  PubMed  Google Scholar 

  42. Oldenborg, P. A. et al. Role of CD47 as a marker of self on red blood cells. Science 288, 2051–2054 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Blazar, B. R. et al. CD47 (integrin-associated protein) engagement of dendritic cell and macrophage counterreceptors is required to prevent the clearance of donor lymphohematopoietic cells. J. Exp. Med. 194, 541–549 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Khandelwal, S., van Rooijen, N. & Saxena, R. K. Reduced expression of CD47 during murine red blood cell (RBC) senescence and its role in RBC clearance from the circulation. Transfusion 47, 1725–1732 (2007).

    Article  PubMed  Google Scholar 

  45. Savill, J., Hogg, N., Ren, Y. & Haslett, C. Thrombospondin cooperates with CD36 and the vitronectin receptor in macrophage recognition of neutrophils undergoing apoptosis. J. Clin. Invest. 90, 1513–1522 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Doyen, V. et al. Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J. Exp. Med. 198, 1277–1283 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, S. S., Liu, Z., Uzunel, M. & Sundqvist, K. G. Endogenous thrombospondin-1 is a cell-surface ligand for regulation of integrin-dependent T-lymphocyte adhesion. Blood 108, 3112–3120 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Li, S. S., Forslow, A. & Sundqvist, K. G. Autocrine regulation of T cell motility by calreticulin-thrombospondin-1 interaction. J. Immunol. 174, 654–661 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Pillay, J. et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood 116, 625–627 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Ghiran, I., Klickstein, L. B. & Nicholson-Weller, A. Calreticulin is at the surface of circulating neutrophils and uses CD59 as an adaptor molecule. J. Biol. Chem. 278, 21024–21031 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Majeti, R. et al. CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell 138, 286–299 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Michalak, M., Groenendyk, J., Szabo, E., Gold, L. I. & Opas, M. Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem. J. 417, 651–666 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Eggleton, P. & Llewellyn, D. H. Pathophysiological roles of calreticulin in autoimmune disease. Scand. J. Immunol. 49, 466–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. Mevorach, D., Zhou, J. L., Song, X. & Elkon, K. B. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J. Exp. Med. 188, 387–392 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kong, X. N. et al. LPS-induced down-regulation of signal regulatory protein α contributes to innate immune activation in macrophages. J. Exp. Med. 204, 2719–2731 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Obeid, M. et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nature Med. 13, 54–61 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Gaipl, U. S. et al. Defects in the disposal of dying cells lead to autoimmunity. Curr. Rheumatol. Rep. 6, 401–407 (2004).

    Article  PubMed  Google Scholar 

  58. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chao, M. P. et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142, 699–713 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chao, M. P. et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res. 71, 1374–1384 (2011).

    Article  CAS  PubMed  Google Scholar 

  61. Chan, K. S. et al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA 106, 14016–14021 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chao, M. P. et al. Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2, 63ra94 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lim, L. H. & Pervaiz, S. Annexin 1: the new face of an old molecule. FASEB J. 21, 968–975 (2007).

    Article  CAS  PubMed  Google Scholar 

  64. Xia, S. H. et al. Three isoforms of annexin I are preferentially expressed in normal esophageal epithelia but down-regulated in esophageal squamous cell carcinomas. Oncogene 21, 6641–6648 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Xin, W., Rhodes, D. R., Ingold, C., Chinnaiyan, A. M. & Rubin, M. A. Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am. J. Pathol. 162, 255–261 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Connor, J., Bucana, C., Fidler, I. J. & Schroit, A. J. Differentiation-dependent expression of phosphatidylserine in mammalian plasma membranes: quantitative assessment of outer-leaflet lipid by prothrombinase complex formation. Proc. Natl Acad. Sci. USA 86, 3184–3188 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Utsugi, T., Schroit, A. J., Connor, J., Bucana, C. D. & Fidler, I. J. Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer Res. 51, 3062–3066 (1991).

    CAS  PubMed  Google Scholar 

  68. Rao, L. V., Tait, J. F. & Hoang, A. D. Binding of annexin V to a human ovarian carcinoma cell line (OC-2008). Contrasting effects on cell surface factor VIIa/tissue factor activity and prothrombinase activity. Thromb. Res. 67, 517–531 (1992).

    Article  CAS  PubMed  Google Scholar 

  69. Woehlecke, H., Pohl, A., Alder-Baerens, N., Lage, H. & Herrmann, A. Enhanced exposure of phosphatidylserine in human gastric carcinoma cells overexpressing the half-size ABC transporter BCRP (ABCG2). Biochem. J. 376, 489–495 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zwaal, R. F., Comfurius, P. & Bevers, E. M. Surface exposure of phosphatidylserine in pathological cells. Cell. Mol. Life Sci. 62, 971–988 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Dong, H. P. et al. Evaluation of cell surface expression of phosphatidylserine in ovarian carcinoma effusions using the annexin-V/7-AAD assay: clinical relevance and comparison with other apoptosis parameters. Am. J. Clin. Pathol. 132, 756–762 (2009).

    Article  PubMed  Google Scholar 

  72. Clodi, K. et al. Cell-surface exposure of phosphatidylserine correlates with the stage of fludarabine-induced apoptosis in chronic lymphocytic leukemia and expression of apoptosis-regulating genes. Cytometry 40, 19–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. McWhirter, J. R. et al. Antibodies selected from combinatorial libraries block a tumor antigen that plays a key role in immunomodulation. Proc. Natl Acad. Sci. USA 103, 1041–1046 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brunetti, L. et al. CD200/OX2, a cell surface molecule with immuno-regulatory function, is consistently expressed on hairy cell leukaemia neoplastic cells. Br. J. Haematol. 145, 665–667 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. Siva, A. et al. Immune modulation by melanoma and ovarian tumor cells through expression of the immunosuppressive molecule CD200. Cancer Immunol. Immunother. 57, 987–996 (2008).

    Article  CAS  PubMed  Google Scholar 

  76. Moreaux, J. et al. CD200 is a new prognostic factor in multiple myeloma. Blood 108, 4194–4197 (2006).

    Article  CAS  PubMed  Google Scholar 

  77. Tonks, A. et al. CD200 as a prognostic factor in acute myeloid leukaemia. Leukemia 21, 566–568 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Petermann, K. B. et al. CD200 is induced by ERK and is a potential therapeutic target in melanoma. J. Clin. Invest. 117, 3922–3929 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Moreaux, J., Veyrune, J. L., Reme, T., De Vos, J. & Klein, B. CD200: a putative therapeutic target in cancer. Biochem. Biophys. Res. Commun. 366, 117–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  80. Gorczynski, R. M., Chen, Z., Hu, J., Kai, Y. & Lei, J. Evidence of a role for CD200 in regulation of immune rejection of leukaemic tumour cells in C57BL/6 mice. Clin. Exp. Immunol. 126, 220–229 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kretz-Rommel, A. et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J. Immunol. 178, 5595–5605 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Stumpfova, M., Ratner, D., Desciak, E. B., Eliezri, Y. D. & Owens, D. M. The immunosuppressive surface ligand CD200 augments the metastatic capacity of squamous cell carcinoma. Cancer Res. 70, 2962–2972 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Poels, L. G. et al. Monoclonal antibody against human ovarian tumor-associated antigens. J. Natl Cancer Inst. 76, 781–791 (1986).

    CAS  PubMed  Google Scholar 

  84. Van Niekerk, C. C., Ramaekers, F. C., Hanselaar, A. G., Aldeweireldt, J. & Poels, L. G. Changes in expression of differentiation markers between normal ovarian cells and derived tumors. Am. J. Pathol. 142, 157–177 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Rendtlew Danielsen, J. M., Knudsen, L. M., Dahl, I. M., Lodahl, M. & Rasmussen, T. Dysregulation of CD47 and the ligands thrombospondin 1 and 2 in multiple myeloma. Br. J. Haematol. 138, 756–760 (2007).

    Article  PubMed  CAS  Google Scholar 

  86. Mateo, V. et al. CD47 ligation induces caspase-independent cell death in chronic lymphocytic leukemia. Nature Med. 5, 1277–1284 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Mateo, V. et al. Mechanisms of CD47-induced caspase-independent cell death in normal and leukemic cells: link between phosphatidylserine exposure and cytoskeleton organization. Blood 100, 2882–2890 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Saumet, A., Slimane, M. B., Lanotte, M., Lawler, J. & Dubernard, V. Type 3 repeat/C-terminal domain of thrombospondin-1 triggers caspase-independent cell death through CD47/αvβ3 in promyelocytic leukemia NB4 cells. Blood 106, 658–667 (2005).

    Article  CAS  PubMed  Google Scholar 

  89. Maile, L. A. & Clemmons, D. R. Integrin-associated protein binding domain of thrombospondin-1 enhances insulin-like growth factor-I receptor signaling in vascular smooth muscle cells. Circ. Res. 93, 925–931 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Gallagher, E. J. & LeRoith, D. The proliferating role of insulin and insulin-like growth factors in cancer. Trends Endocrinol. Metab. 21, 610–618 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xing, C., Arai, K., Park, K. P. & Lo, E. H. Induction of vascular endothelial growth factor and matrix metalloproteinase-9 via CD47 signaling in neurovascular cells. Neurochem. Res. 35, 1092–1097 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kaur, S. et al. Thrombospondin-1 inhibits VEGF receptor-2 signaling by disrupting its association with CD47. J. Biol. Chem. 285, 38923–38932 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Manna, P. P., Dimitry, J., Oldenborg, P. A. & Frazier, W. A. CD47 augments Fas/CD95-mediated apoptosis. J. Biol. Chem. 280, 29637–29644 (2005).

    Article  CAS  PubMed  Google Scholar 

  94. Maxhimer, J. B. et al. Radioprotection in normal tissue and delayed tumor growth by blockade of CD47 signaling. Sci. Transl. Med. 1, 3ra7 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. Stem cells, cancer, and cancer stem cells. Nature 414, 105–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  96. Obeid, M. et al. Calreticulin exposure is required for the immunogenicity of γ-irradiation and UVC light-induced apoptosis. Cell Death Differ. 14, 1848–1850 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Mesaeli, N. & Phillipson, C. Impaired p53 expression, function, and nuclear localization in calreticulin-deficient cells. Mol. Biol. Cell 15, 1862–1870 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Calnexin, calreticulin and the folding of glycoproteins. Trends Cell Biol. 7, 193–200 (1997).

  99. Ni, M. & Lee, A. S. ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641–3651 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lwin, Z. M. et al. Clinicopathological significance of calreticulin in breast invasive ductal carcinoma. Mod. Pathol. 23, 1559–1566 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Chen, C. N. et al. Identification of calreticulin as a prognosis marker and angiogenic regulator in human gastric cancer. Ann. Surg. Oncol. 16, 524–533 (2009).

    Article  CAS  PubMed  Google Scholar 

  102. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  PubMed  Google Scholar 

  103. Lee, A. S. Mammalian stress response: induction of the glucose-regulated protein family. Curr. Opin. Cell Biol. 4, 267–273 (1992).

    Article  CAS  PubMed  Google Scholar 

  104. Ma, Y. & Hendershot, L. M. The role of the unfolded protein response in tumour development: friend or foe? Nature Rev. Cancer 4, 966–977 (2004).

    Article  CAS  Google Scholar 

  105. Panaretakis, T. et al. The co-translocation of ERp57 and calreticulin determines the immunogenicity of cell death. Cell Death Differ. 15, 1499–1509 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Obeid, M. ERP57 membrane translocation dictates the immunogenicity of tumor cell death by controlling the membrane translocation of calreticulin. J. Immunol. 181, 2533–2543 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Strickland, D. K., Kounnas, M. Z. & Argraves, W. S. LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB J. 9, 890–898 (1995).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, J. S. et al. Secreted heat shock protein 90α induces colorectal cancer cell invasion through CD91/LRP-1 and NF-κB-mediated integrin αV expression. J. Biol. Chem. 285, 25458–25466 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Montel, V., Gaultier, A., Lester, R. D., Campana, W. M. & Gonias, S. L. The low-density lipoprotein receptor-related protein regulates cancer cell survival and metastasis development. Cancer Res. 67, 9817–9824 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Liu, M., Imam, H., Oberg, K. & Zhou, Y. Gene transfer of vasostatin, a calreticulin fragment, into neuroendocrine tumor cells results in enhanced malignant behavior. Neuroendocrinology 82, 1–10 (2005).

    Article  CAS  PubMed  Google Scholar 

  111. Pike, S. E. et al. Calreticulin and calreticulin fragments are endothelial cell inhibitors that suppress tumor growth. Blood 94, 2461–2468 (1999).

    CAS  PubMed  Google Scholar 

  112. Pike, S. E. et al. Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J. Exp. Med. 188, 2349–2356 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Helbling, D. et al. The leukemic fusion gene AML1-MDS1-EVI1 suppresses CEBPA in acute myeloid leukemia by activation of Calreticulin. Proc. Natl Acad. Sci. USA 101, 13312–13317 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Schardt, J. A., Eyholzer, M., Timchenko, N. A., Mueller, B. U. & Pabst, T. Unfolded protein response suppresses CEBPA by induction of calreticulin in acute myeloid leukaemia. J. Cell. Mol. Med. 14, 1509–1519 (2010).

    Article  CAS  PubMed  Google Scholar 

  115. Ogino, T. et al. Association of tapasin and HLA class I antigen down-regulation in primary maxillary sinus squamous cell carcinoma lesions with reduced survival of patients. Clin. Cancer Res. 9, 4043–4051 (2003).

    CAS  PubMed  Google Scholar 

  116. Ogino, T. et al. HLA class I antigen down-regulation in primary laryngeal squamous cell carcinoma lesions as a poor prognostic marker. Cancer Res. 66, 9281–9289 (2006).

    Article  CAS  PubMed  Google Scholar 

  117. Brown, E. J. & Frazier, W. A. Integrin-associated protein (CD47) and its ligands. Trends Cell Biol. 11, 130–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  118. Sarfati, M., Fortin, G., Raymond, M. & Susin, S. CD47 in the immune response: role of thrombospondin and SIRP-α reverse signaling. Curr. Drug Targets 9, 842–850 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Matozaki, T., Murata, Y., Okazawa, H. & Ohnishi, H. Functions and molecular mechanisms of the CD47-SIRPα signalling pathway. Trends Cell Biol. 19, 72–80 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Frazier, W. A., Isenberg, J. S., Kaur, S., Roberts, D. D. CD47. UCSD Nature Molecule Pages (2010).

    Google Scholar 

  121. Lindberg, F. P. et al. Decreased resistance to bacterial infection and granulocyte defects in IAP-deficient mice. Science 274, 795–798 (1996).

    Article  CAS  PubMed  Google Scholar 

  122. Wright, D. E., Wagers, A. J., Gulati, A. P., Johnson, F. L. & Weissman, I. L. Physiological migration of hematopoietic stem and progenitor cells. Science 294, 1933–1936 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Weissman, I. Stem cell research: paths to cancer therapies and regenerative medicine. JAMA 294, 1359–1366 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Chao, M. P. et al. Extra-nodal dissemination of non-Hodgkin's lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 118, 4890–4901 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Vogelstein, B., Lane, D. & Levine, A. J. Surfing the p53 network. Nature 408, 307–310 (2000).

    Article  CAS  PubMed  Google Scholar 

  126. Vousden, K. H. & Lane, D. P. p53 in health and disease. Nature Rev. Mol. Cell Biol. 8, 275–283 (2007).

    Article  CAS  Google Scholar 

  127. Letai, A. G. Diagnosing and exploiting cancer's addiction to blocks in apoptosis. Nature Rev. Cancer 8, 121–132 (2008).

    Article  CAS  Google Scholar 

  128. Park, W. S. et al. Somatic mutations in the death domain of the Fas (Apo-1/CD95) gene in gastric cancer. J. Pathol. 193, 162–168 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Landowski, T. H., Qu, N., Buyuksal, I., Painter, J. S. & Dalton, W. S. Mutations in the Fas antigen in patients with multiple myeloma. Blood 90, 4266–4270 (1997).

    CAS  PubMed  Google Scholar 

  130. Gronbaek, K. et al. Somatic Fas mutations in non-Hodgkin's lymphoma: association with extranodal disease and autoimmunity. Blood 92, 3018–3024 (1998).

    CAS  PubMed  Google Scholar 

  131. Shin, M. S. et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res. 61, 4942–4946 (2001).

    CAS  PubMed  Google Scholar 

  132. Fisher, M. J. et al. Nucleotide substitution in the ectodomain of trail receptor DR4 is associated with lung cancer and head and neck cancer. Clin. Cancer Res. 7, 1688–1697 (2001).

    CAS  PubMed  Google Scholar 

  133. Pai, S. I. et al. Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res. 58, 3513–3518 (1998).

    CAS  PubMed  Google Scholar 

  134. Lee, S. H. et al. Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res. 59, 5683–5686 (1999).

    CAS  PubMed  Google Scholar 

  135. Grubach, L. et al. Gene expression profiling of Polycomb, Hox and Meis genes in patients with acute myeloid leukaemia. Eur. J. Haematol. 81, 112–122 (2008).

    Article  CAS  PubMed  Google Scholar 

  136. Shah, N. & Sukumar, S. The Hox genes and their roles in oncogenesis. Nature Rev. Cancer 10, 361–371 (2010).

    Article  CAS  Google Scholar 

  137. Argiropoulos, B. & Humphries, R. K. Hox genes in hematopoiesis and leukemogenesis. Oncogene 26, 6766–6776, (2007).

    Article  CAS  PubMed  Google Scholar 

  138. Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nature Rev. Cancer 11, 289–301 (2011).

    Article  CAS  Google Scholar 

  139. LaCasse, E. C. et al. IAP-targeted therapies for cancer. Oncogene 27, 6252–6275 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. Garcia Pedrero, J. M. et al. Annexin A1 down-regulation in head and neck cancer is associated with epithelial differentiation status. Am. J. Pathol. 164, 73–79 (2004).

    Article  PubMed  Google Scholar 

  141. Paweletz, C. P. et al. Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res. 60, 6293–6297 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ludwig Foundation. R.M. holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund. M.P.C., R.M. and I.L.W. have filed US Patent Application Serial No. 12/321215 entitled Methods For Manipulating Phagocytosis Mediated by CD47.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mark P. Chao or Ravindra Majeti.

Ethics declarations

Competing interests

M.P.C., R.M. and I.L.W. filed US Patent Application Serial No. 12/321,215 entitled “Methods for Manipulating Phagocytosis Mediated by CD47” and have filed US Provisional Patent Application Serial No. 61/459,909 entitled “Therapeutic and Diagnostic Methods for Manipulating Phagocytosis through Calreticulin and Low Density Lipoprotein Related Receptor”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chao, M., Majeti, R. & Weissman, I. Programmed cell removal: a new obstacle in the road to developing cancer. Nat Rev Cancer 12, 58–67 (2012). https://doi.org/10.1038/nrc3171

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3171

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer