Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MDM2, MDMX and p53 in oncogenesis and cancer therapy

Key Points

  • MDM2 and MDMX are RING domain proteins that exert their oncogenic effects primarily by inhibiting the p53 tumour suppressor protein.

  • Each protein is overexpressed in diverse tumour types by mechanisms including gene amplification and post-translational stabilization; this is generally more frequent in tumours with a wild-type TP53 allele.

  • Despite their similar structures, only MDM2 has intrinsic E3 ubiquitin ligase activity. Although MDM2 alone can inhibit p53, its RING-dependent heterodimerization with MDMX has an important role in p53 inhibition.

  • Both MDM2 and MDMX interact with multiple other partners. Aberrant interactions with these partners may also affect gene expression and genome stability.

  • Structure-based drug design has yielded several MDM antagonists that block MDM–p53 interactions, leading to p53 activation. At least one agent has progressed to clinical trials.

  • Systems biology studies are providing the rationale for using MDM protein antagonists in combination with both approved and experimental pathway-targeted anticancer drugs.

Abstract

The MDM2 and MDMX (also known as HDMX and MDM4) proteins are deregulated in many human cancers and exert their oncogenic activity predominantly by inhibiting the p53 tumour suppressor. However, the MDM proteins modulate and respond to many other signalling networks in which they are embedded. Recent mechanistic studies and animal models have demonstrated how functional interactions in these networks are crucial for maintaining normal tissue homeostasis, and for determining responses to oncogenic and therapeutic challenges. This Review highlights the progress made and pitfalls encountered as the field continues to search for MDM-targeted antitumour agents.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional and post-translational regulation of MDM2 and MDMX.

Similar content being viewed by others

References

  1. Bieging, K. T. & Attardi, L. D. Deconstructing p53 transcriptional networks in tumor suppression. Trends Cell Biol. 22, 97–106 (2012).

    CAS  PubMed  Google Scholar 

  2. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69, 1237–1245 (1992). The first demonstration that MDM2 could inhibit p53 activity.

    CAS  PubMed  Google Scholar 

  3. Shibagaki, I. et al. p53 mutation, murine double minute 2 amplification, and human papillomavirus infection are frequently involved but not associated with each other in esophageal squamous cell carcinoma. Clin. Cancer Res. 1, 769–773 (1995).

    CAS  PubMed  Google Scholar 

  4. Forslund, A. et al. MDM2 gene amplification is correlated to tumor progression but not to the presence of SNP309 or TP53 mutational status in primary colorectal cancers. Mol. Cancer Res. 6, 205–211 (2008).

    CAS  PubMed  Google Scholar 

  5. Ito, M. et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

    Google Scholar 

  6. Lam, S. et al. Role of Mdm4 in drug sensitivity of breast cancer cells. Oncogene 29, 2415–2426 (2010).

    CAS  PubMed  Google Scholar 

  7. Mejia-Guerrero, S. et al. Characterization of the 12q15 MDM2 and 12q13-14 CDK4 amplicons and clinical correlations in osteosarcoma. Genes Chromosomes Cancer 49, 518–525 (2010).

    CAS  PubMed  Google Scholar 

  8. Ito, M. et al. Comprehensive mapping of p53 pathway alterations reveals an apparent role for both SNP309 and MDM2 amplification in sarcomagenesis. Clin. Cancer Res. 17, 416–426 (2011).

    CAS  PubMed  Google Scholar 

  9. Gilkes, D. M. et al. Regulation of MDMX expression by mitogenic signaling. Mol. Cell. Biol. 28, 1999–2010 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gembarska, A. et al. MDM4 is a key therapeutic target in cutaneous melanoma. Nature Med. 18, 1239–1247 (2012). The first report showing that MDMX is associated with aggressive melanoma in vivo and can be targeted with a dual MDM2 and MDMX inhibitor peptide.

    CAS  PubMed  Google Scholar 

  11. Kussie, P. H. et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948–953 (1996). The structure that described the hydrophobic p53-binding pocket of MDM2, on which many drug discovery efforts are now based.

    CAS  PubMed  Google Scholar 

  12. Laurie, N. A. et al. Inactivation of the p53 pathway in retinoblastoma. Nature 444, 61–66 (2006).

    CAS  PubMed  Google Scholar 

  13. Barak, Y., Gottlieb, E., Juven-Gershon, T. & Oren, M. Regulation of mdm2 expression by p53: alternative promoters produce transcripts with nonidentical translation potential. Genes Dev. 8, 1739–1749 (1994).

    CAS  PubMed  Google Scholar 

  14. Phillips, A. et al. HDMX-L is expressed from a functional p53-responsive promoter in the first intron of the HDMX gene and participates in an autoregulatory feedback loop to control p53 activity. J. Biol. Chem. 285, 29111–29127 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H. & Weissman, A. M. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275, 8945–8951 (2000). This paper revealed that MDM2 controls the stability of both itself and p53, and that the RING domain was required for these functions.

    CAS  PubMed  Google Scholar 

  16. Linares, L. K., Hengstermann, A., Ciechanover, A., Muller, S. & Scheffner, M. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc. Natl Acad. Sci. USA 100, 12009–12014 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang, L. et al. The p53 inhibitors MDM2/MDMX complex is required for control of p53 activity in vivo. Proc. Natl Acad. Sci. USA 108, 12001–12006 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pant, V., Xiong, S., Iwakuma, T., Quintas-Cardama, A. & Lozano, G. Heterodimerization of Mdm2 and Mdm4 is critical for regulating p53 activity during embryogenesis but dispensable for p53 and Mdm2 stability. Proc. Natl Acad. Sci. USA 108, 11995–12000 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Plechanovova, A., Jaffray, E. G., Tatham, M. H., Naismith, J. H. & Hay, R. T. Structure of a RING E3 ligase and ubiquitin-loaded E2 primed for catalysis. Nature 489, 115–120 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Poyurovsky, M. V. et al. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26, 90–101 (2007).

    CAS  PubMed  Google Scholar 

  21. Uldrijan, S., Pannekoek, W. J. & Vousden, K. H. An essential function of the extreme C-terminus of MDM2 can be provided by MDMX. EMBO J. 26, 102–112 (2007).

    CAS  PubMed  Google Scholar 

  22. Pishas, K. I. et al. Nutlin-3a is a potential therapeutic for ewing sarcoma. Clin. Cancer Res. 17, 494–504 (2011).

    CAS  PubMed  Google Scholar 

  23. McEvoy, J. et al. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma. PLoS ONE 7, e42739 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Francoz, S. et al. Mdm4 and Mdm2 cooperate to inhibit p53 activity in proliferating and quiescent cells in vivo. Proc. Natl Acad. Sci. USA 103, 3232–3237 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ries, S. et al. Opposing effects of Ras on p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103, 321–330 (2000).

    CAS  PubMed  Google Scholar 

  26. Alt, J. R., Greiner, T. C., Cleveland, J. L. & Eischen, C. M. Mdm2 haplo-insufficiency profoundly inhibits Myc-induced lymphomagenesis. EMBO J. 22, 1442–1450 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Terzian, T. et al. Haploinsufficiency of Mdm2 and Mdm4 in tumorigenesis and development. Mol. Cell. Biol. 27, 5479–5485 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. De Clercq, S. et al. Widespread overexpression of epitope-tagged Mdm4 does not accelerate tumor formation in vivo. Mol. Cell. Biol. 30, 5394–5405 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, J. X. et al. IFN regulatory factor 8 regulates MDM2 in germinal center B cells. J. Immunol. 183, 3188–3194 (2009).

    CAS  PubMed  Google Scholar 

  30. Tarocchi, M. et al. Carcinogen-induced hepatic tumors in KLF6+/− mice recapitulate aggressive human hepatocellular carcinoma associated with p53 pathway deregulation. Hepatology 54, 522–531 (2011).

    CAS  PubMed  Google Scholar 

  31. Zhang, X. et al. Transcription factor NFAT1 activates the mdm2 oncogene independent of p53. J. Biol. Chem. 287, 30468–30476 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lopez-Pajares, V., Kim, M. M. & Yuan, Z. M. Phosphorylation of MDMX mediated by Akt leads to stabilization and induces 14-3-3 binding. J. Biol. Chem. 283, 13707–13713 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen, L., Li, C., Pan, Y. & Chen, J. Regulation of p53-MDMX interaction by casein kinase 1 α. Mol. Cell. Biol. 25, 6509–6520 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mayo, L. D., Turchi, J. J. & Berberich, S. J. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res. 57, 5013–5016 (1997).

    CAS  PubMed  Google Scholar 

  36. Zuckerman, V. et al. c-Abl phosphorylates Hdmx and regulates its interaction with p53. J. Biol. Chem. 284, 4031–4039 (2009).

    CAS  PubMed  Google Scholar 

  37. Meek, D. W. & Hupp, T. R. The regulation of MDM2 by multisite phosphorylation-opportunities for molecular-based intervention to target tumours? Semin. Cancer Biol. 20, 19–28 (2010).

    CAS  PubMed  Google Scholar 

  38. Maya, R. et al. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15, 1067–1077 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen, L., Gilkes, D. M., Pan, Y., Lane, W. S. & Chen, J. ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J. 24, 3411–3422 (2005). This paper revealed the correlation between phosphorylation and degradation of MDMX and activation of p53.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Pereg, Y. et al. Differential roles of ATM- and Chk2-mediated phosphorylations of Hdmx in response to DNA damage. Mol. Cell. Biol. 26, 6819–6831 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cheng, Q., Chen, L., Li, Z., Lane, W. S. & Chen, J. ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J. 28, 3857–3867 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Jackson, J. G., Post, S. M. & Lozano, G. Regulation of tissue- and stimulus-specific cell fate decisions by p53 in vivo. J. Pathol. 223, 127–136 (2011).

    CAS  PubMed  Google Scholar 

  43. Lu, X., Nguyen, T. A., Zhang, X. & Donehower, L. A. The Wip1 phosphatase and Mdm2: cracking the “Wip” on p53 stability. Cell Cycle 7, 164–168 (2008).

    CAS  PubMed  Google Scholar 

  44. Zhang, X. et al. Phosphorylation and degradation of MdmX is inhibited by Wip1 phosphatase in the DNA damage response. Cancer Res. 69, 7960–7968 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Winter, M. et al. Protein kinase CK1δ phosphorylates key sites in the acidic domain of murine double-minute clone 2 protein (MDM2) that regulate p53 turnover. Biochemistry 43, 16356–16364 (2004).

    CAS  PubMed  Google Scholar 

  46. Wang, Y. V., Leblanc, M., Wade, M., Jochemsen, A. G. & Wahl, G. M. Increased radioresistance and accelerated B cell lymphomas in mice with Mdmx mutations that prevent modifications by DNA-damage-activated kinases. Cancer Cell 16, 33–43 (2009). The first report that MDMX phosphorylation is crucial for the response to ionizing radiation in vivo and that MDMX cooperates with another oncogene, MYC , to accelerate cancer.

    PubMed  PubMed Central  Google Scholar 

  47. Gannon, H. S., Woda, B. A. & Jones, S. N. ATM phosphorylation of Mdm2 Ser394 regulates the amplitude and duration of the DNA damage response in mice. Cancer Cell 21, 668–679 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin, C. P., Choi, Y. J., Hicks, G. G. & He, L. The emerging functions of the p53-miRNA network in stem cell biology. Cell Cycle 11, 2063–2072 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Lujambio, A. & Lowe, S. W. The microcosmos of cancer. Nature 482, 347–355 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Pichiorri, F. et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18, 367–381 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Markey, M. & Berberich, S. J. Full-length hdmX transcripts decrease following genotoxic stress. Oncogene 27, 6657–6666 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Mandke, P. et al. MicroRNA-34a modulates MDM4 expression via a target site in the open reading frame. PLoS ONE 7, e42034 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Wynendaele, J. et al. An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res. 70, 9641–9649 (2010).

    CAS  PubMed  Google Scholar 

  54. Concepcion, C. P. et al. Intact p53-dependent responses in miR-34-deficient mice. PLoS Genet. 8, e1002797 (2012). This article forces a re-evaluation of the contexts in which miR-34 contributes to the p53 response in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Forte, E. et al. The Epstein-Barr virus (EBV)-induced tumor suppressor microRNA MiR-34a is growth promoting in EBV-infected B cells. J. Virol. 86, 6889–6898 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Forte, E. & Luftig, M. A. MDM2-dependent inhibition of p53 is required for Epstein-Barr virus B-cell growth transformation and infected-cell survival. J. Virol. 83, 2491–2499 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee, H. R. et al. Kaposi's sarcoma-associated herpesvirus viral interferon regulatory factor 4 targets MDM2 to deregulate the p53 tumor suppressor pathway. J. Virol. 83, 6739–6747 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wang, P. et al. Elevated Mdm2 expression induces chromosomal instability and confers a survival and growth advantage to B cells. Oncogene 27, 1590–1598 (2008).

    CAS  PubMed  Google Scholar 

  59. Dharel, N. et al. MDM2 promoter SNP309 is associated with the risk of hepatocellular carcinoma in patients with chronic hepatitis C. Clin. Cancer Res. 12, 4867–4871 (2006).

    CAS  PubMed  Google Scholar 

  60. Sarek, G. et al. Reactivation of the p53 pathway as a treatment modality for KSHV-induced lymphomas. J. Clin. Invest. 117, 1019–1028 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Marine, J. C. & Lozano, G. Mdm2-mediated ubiquitylation: p53 and beyond. Cell Death Differ. 17, 93–102 (2010).

    CAS  PubMed  Google Scholar 

  62. Fakharzadeh, S. S., Trusko, S. P. & George, D. L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 10, 1565–1569 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Danovi, D. et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol. Cell. Biol. 24, 5835–5843 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lenos, K. et al. Oncogenic functions of hMDMX in in vitro transformation of primary human fibroblasts and embryonic retinoblasts. Mol. Cancer 10, 111 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Lundgren, K. et al. Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev. 11, 714–725 (1997).

    CAS  PubMed  Google Scholar 

  66. Jones, S. N., Hancock, A. R., Vogel, H., Donehower, L. A. & Bradley, A. Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc. Natl Acad. Sci. USA 95, 15608–15612 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Post, S. M. et al. A high-frequency regulatory polymorphism in the p53 pathway accelerates tumor development. Cancer Cell 18, 220–230 (2010). In vivo evidence that an MDM2 SNP is associated with increased cancer incidence in women is causally associated with tumorigenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Xiong, S. et al. Spontaneous tumorigenesis in mice overexpressing the p53-negative regulator Mdm4. Cancer Res. 70, 7148–7154 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Park, S. S. et al. Insertion of Myc into Igh accelerates peritoneal plasmacytomas in mice. Cancer Res. 65, 7644–7652 (2005).

    CAS  PubMed  Google Scholar 

  70. Miller, K. R., Kelley, K., Tuttle, R. & Berberich, S. J. HdmX overexpression inhibits oncogene induced cellular senescence. Cell Cycle 9, 3376–3382 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hsu, B. et al. Evidence that c-myc mediated apoptosis does not require wild-type p53 during lymphomagenesis. Oncogene 11, 175–179 (1995).

    CAS  PubMed  Google Scholar 

  72. Catalogue of Somatic Mutations in Cancer. Wellcome Trust Sanger Institute [online]

  73. Slack, A., Lozano, G. & Shohet, J. M. MDM2 as MYCN transcriptional target: implications for neuroblastoma pathogenesis. Cancer Lett. 228, 21–27 (2005).

    CAS  PubMed  Google Scholar 

  74. Mayo, L. D., Dixon, J. E., Durden, D. L., Tonks, N. K. & Donner, D. B. PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J. Biol. Chem. 277, 5484–5489 (2002).

    CAS  PubMed  Google Scholar 

  75. Cipriano, R., Patton, J. T., Mayo, L. D. & Jackson, M. W. Inactivation of p53 signaling by p73 or PTEN ablation results in a transformed phenotype that remains susceptible to Nutlin-3 mediated apoptosis. Cell Cycle 9, 1373–1379 (2010).

    CAS  PubMed  Google Scholar 

  76. Tabe, Y. et al. MDM2 antagonist nutlin-3 displays antiproliferative and proapoptotic activity in mantle cell lymphoma. Clin. Cancer Res. 15, 933–942 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Brown, C. J., Lain, S., Verma, C. S., Fersht, A. R. & Lane, D. P. Awakening guardian angels: drugging the p53 pathway. Nature Rev. Cancer 9, 862–873 (2009).

    CAS  Google Scholar 

  78. Martins, C. P., Brown-Swigart, L. & Evan, G. I. Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127, 1323–1334 (2006).

    CAS  PubMed  Google Scholar 

  79. Ventura, A. et al. Restoration of p53 function leads to tumour regression in vivo. Nature 445, 661–665 (2007).

    CAS  PubMed  Google Scholar 

  80. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ringshausen, I., O'Shea, C. C., Finch, A. J., Swigart, L. B. & Evan, G. I. Mdm2 is critically and continuously required to suppress lethal p53 activity in vivo. Cancer Cell 10, 501–514 (2006).

    CAS  PubMed  Google Scholar 

  82. Bondar, T. & Medzhitov, R. p53-mediated hematopoietic stem and progenitor cell competition. Cell Stem Cell 6, 309–322 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang, Y. V. et al. Fine-tuning p53 activity through C-terminal modification significantly contributes to HSC homeostasis and mouse radiosensitivity. Genes Dev. 25, 1426–1438 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Tovar, C. et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc. Natl Acad. Sci. USA 103, 1888–1893 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Garcia, D. et al. Validation of MdmX as a therapeutic target for reactivating p53 in tumors. Genes Dev. 25, 1746–1757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lane, D. P., Cheok, C. F. & Lain, S. p53-based cancer therapy. Cold Spring Harb. Perspect. Biol. 2, a001222 (2010).

    PubMed  PubMed Central  Google Scholar 

  87. Kole, R., Krainer, A. R. & Altman, S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nature Rev. Drug Discov. 11, 125–140 (2012).

    CAS  Google Scholar 

  88. Wang, H., Ma, X., Ren, S., Buolamwini, J. K. & Yan, C. A small-molecule inhibitor of MDMX activates p53 and induces apoptosis. Mol. Cancer Ther. 10, 69–79 (2011).

    CAS  PubMed  Google Scholar 

  89. Kapitzky, L. et al. Cross-species chemogenomic profiling reveals evolutionarily conserved drug mode of action. Mol. Syst. Biol. 6, 451 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Pereg, Y. et al. Phosphorylation of Hdmx mediates its Hdm2- and ATM-dependent degradation in response to DNA damage. Proc. Natl Acad. Sci. USA 102, 5056–5061 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Whitesell, L. & Lindquist, S. L. HSP90 and the chaperoning of cancer. Nature Rev. Cancer 5, 761–772 (2005).

    CAS  Google Scholar 

  92. Vaseva, A. V., Yallowitz, A. R., Marchenko, N. D., Xu, S. & Moll, U. M. Blockade of Hsp90 by 17AAG antagonizes MDMX and synergizes with Nutlin to induce p53-mediated apoptosis in solid tumors. Cell Death Dis. 2, e156 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, X. et al. Three-dimensional reconstruction of protein networks provides insight into human genetic disease. Nature Biotechnol. 30, 159–164 (2012).

    CAS  Google Scholar 

  94. Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L. & Vidal, M. Drug-target network. Nature Biotechnol. 25, 1119–1126 (2007).

    CAS  Google Scholar 

  95. Wells, J. A. & McClendon, C. L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–1009 (2007).

    CAS  PubMed  Google Scholar 

  96. Vassilev, L. T. et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303, 844–848 (2004). This paper describes the first small-molecule MDM2 antagonist that inhibits the p53–MDM2 interaction and activates p53 in a non-genotoxic manner.

    CAS  PubMed  Google Scholar 

  97. Ding, K. et al. Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J. Med. Chem. 49, 3432–3435 (2006).

    CAS  PubMed  Google Scholar 

  98. Ray-Coquard, I. et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 13, 1133–1140 (2012).

    CAS  PubMed  Google Scholar 

  99. Patton, J. T. et al. Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res. 66, 3169–3176 (2006).

    CAS  PubMed  Google Scholar 

  100. Wade, M., Rodewald, L. W., Espinosa, J. M. & Wahl, G. M. BH3 activation blocks Hdmx suppression of apoptosis and cooperates with Nutlin to induce cell death. Cell Cycle 7, 1973–1982 (2008).

    CAS  PubMed  Google Scholar 

  101. Hu, B., Gilkes, D. M., Farooqi, B., Sebti, S. M. & Chen, J. MDMX overexpression prevents p53 activation by the MDM2 inhibitor Nutlin. J. Biol. Chem. 281, 33030–33035 (2006).

    CAS  PubMed  Google Scholar 

  102. Wade, M., Wong, E. T., Tang, M., Stommel, J. M. & Wahl, G. M. Hdmx modulates the outcome of p53 activation in human tumor cells. J. Biol. Chem. 281, 33036–33044 (2006).

    CAS  PubMed  Google Scholar 

  103. Graves, B. et al. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc. Natl Acad. Sci. USA 109, 11788–11793 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Brennan, R. C. et al. Targeting the p53 pathway in retinoblastoma with subconjunctival Nutlin-3a. Cancer Res. 71, 4205–4213 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Reed, D. et al. Identification and characterization of the first small molecule inhibitor of MDMX. J. Biol. Chem. 285, 10786–10796 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Bista, M. et al. On the mechanism of action of SJ-172550 in inhibiting the interaction of MDM4 and p53. PLoS ONE 7, e37518 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Montes de Oca Luna, R., Wagner, D. S. & Lozano, G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378, 203–206 (1995).

    CAS  PubMed  Google Scholar 

  108. Parant, J. et al. Rescue of embryonic lethality in Mdm4-null mice by loss of Trp53 suggests a nonoverlapping pathway with MDM2 to regulate p53. Nature Genet. 29, 92–95 (2001). References 107 and 108 demonstrate that deletions of Mdm2 and Mdmx cause embryonic lethality that can be rescued by Trp53 deletion, thus providing genetic evidence that MDM2 and MDM4 are crucial p53 repressors with non-overlapping functions.

    CAS  PubMed  Google Scholar 

  109. Xiong, S., Van Pelt, C. S., Elizondo-Fraire, A. C., Liu, G. & Lozano, G. Synergistic roles of Mdm2 and Mdm4 for p53 inhibition in central nervous system development. Proc. Natl Acad. Sci. USA 103, 3226–3231 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bernal, F. et al. A stapled p53 helix overcomes HDMX-mediated suppression of p53. Cancer Cell 18, 411–422 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hu, B., Gilkes, D. M. & Chen, J. Efficient p53 activation and apoptosis by simultaneous disruption of binding to MDM2 and MDMX. Cancer Res. 67, 8810–8817 (2007).

    CAS  PubMed  Google Scholar 

  112. Pazgier, M. et al. Structural basis for high-affinity peptide inhibition of p53 interactions with MDM2 and MDMX. Proc. Natl Acad. Sci. USA 106, 4665–4670 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Verdine, G. L. & Hilinski, G. J. Stapled peptides for intracellular drug targets. Methods Enzymol. 503, 3–33 (2012).

    CAS  PubMed  Google Scholar 

  114. Aranovich, A. et al. Differences in the mechanisms of proapoptotic BH3 proteins binding to Bcl-XL and Bcl-2 quantified in live MCF-7 cells. Mol. Cell 45, 754–763 (2012).

    CAS  PubMed  Google Scholar 

  115. Yang, Y. et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell 7, 547–559 (2005).

    CAS  PubMed  Google Scholar 

  116. Roxburgh, P. et al. Small molecules that bind the Mdm2 RING stabilize and activate p53. Carcinogenesis 33, 791–798 (2012).

    CAS  PubMed  Google Scholar 

  117. Herman, A. G. et al. Discovery of Mdm2-MdmX E3 ligase inhibitors using a cell-based ubiquitination assay. Cancer Discov. 1, 312–325 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Shloush, J. et al. Structural and functional comparison of the RING domains of two p53 E3 ligases, Mdm2 and Pirh2. J. Biol. Chem. 286, 4796–4808 (2011).

    CAS  PubMed  Google Scholar 

  119. Saville, M. K. et al. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J. Biol. Chem. 279, 42169–42181 (2004).

    CAS  PubMed  Google Scholar 

  120. Ye, Y. & Rape, M. Building ubiquitin chains: E2 enzymes at work. Nature Rev. Mol. Cell Biol. 10, 755–764 (2009).

    CAS  Google Scholar 

  121. Deshaies, R. J. & Joazeiro, C. A. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78, 399–434 (2009).

    CAS  PubMed  Google Scholar 

  122. Cohen, P. & Tcherpakov, M. Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143, 686–693 (2010).

    CAS  PubMed  Google Scholar 

  123. Al-Lazikani, B., Banerji, U. & Workman, P. Combinatorial drug therapy for cancer in the post-genomic era. Nature Biotechnol. 30, 679–692 (2012).

    CAS  Google Scholar 

  124. Wade, M. & Wahl, G. M. Targeting Mdm2 and Mdmx in cancer therapy: better living through medicinal chemistry? Mol. Cancer Res. 7, 1–11 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Feng, J. et al. Stabilization of Mdm2 via decreased ubiquitination is mediated by protein kinase B/Akt-dependent phosphorylation. J. Biol. Chem. 279, 35510–35517 (2004).

    CAS  PubMed  Google Scholar 

  126. Jackson, M. W. et al. Hdm2 nuclear export, regulated by insulin-like growth factor-I/MAPK/p90Rsk signaling, mediates the transformation of human cells. J. Biol. Chem. 281, 16814–16820 (2006).

    CAS  PubMed  Google Scholar 

  127. Zhu, N., Gu, L., Li, F. & Zhou, M. Inhibition of the Akt/survivin pathway synergizes the antileukemia effect of nutlin-3 in acute lymphoblastic leukemia cells. Mol. Cancer Ther. 7, 1101–1109 (2008).

    CAS  PubMed  Google Scholar 

  128. Zhang, W. et al. Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces Apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res. 70, 2424–2434 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Garnett, M. J. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483, 570–575 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Sullivan, K. D. et al. ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nature Chem. Biol. 8, 646–654 (2012).

    CAS  Google Scholar 

  132. Moumen, A., Patane, S., Porras, A., Dono, R. & Maina, F. Met acts on Mdm2 via mTOR to signal cell survival during development. Development 134, 1443–1451 (2007).

    CAS  PubMed  Google Scholar 

  133. Cheok, C. F., Verma, C. S., Baselga, J. & Lane, D. P. Translating p53 into the clinic. Nature Rev. Clin. Oncol. 8, 25–37 (2011).

    CAS  Google Scholar 

  134. Bouska, A. & Eischen, C. M. Murine double minute 2: p53-independent roads lead to genome instability or death. Trends Biochem. Sci. 34, 279–286 (2009).

    CAS  PubMed  Google Scholar 

  135. Wade, M., Wang, Y. V. & Wahl, G. M. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol. 20, 299–309 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Chymkowitch, P., Le May, N., Charneau, P., Compe, E. & Egly, J. M. The phosphorylation of the androgen receptor by TFIIH directs the ubiquitin/proteasome process. EMBO J. 30, 468–479 (2011).

    CAS  PubMed  Google Scholar 

  137. Kim, K. et al. MDM2 regulates estrogen receptor α and estrogen responsiveness in breast cancer cells. J. Mol. Endocrinol. 46, 67–79 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Lin, H. K., Wang, L., Hu, Y. C., Altuwaijri, S. & Chang, C. Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J. 21, 4037–4048 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Linn, D. E. et al. Differential regulation of androgen receptor by PIM-1 kinases via phosphorylation-dependent recruitment of distinct ubiquitin E3 ligases. J. Biol. Chem. 287, 22959–22968 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Sanchez, M., Picard, N., Sauve, K. & Tremblay, A. Coordinate regulation of estrogen receptor β degradation by Mdm2 and CREB-binding protein in response to growth signals. Oncogene 20 Feb 2012 (doi:10.1038/onc.2012.19).

    PubMed  Google Scholar 

  141. Saji, S. et al. MDM2 enhances the function of estrogen receptor α in human breast cancer cells. Biochem. Biophys. Res. Commun. 281, 259–265 (2001).

    CAS  PubMed  Google Scholar 

  142. Tang, Y. A. et al. MDM2 overexpression deregulates the transcriptional control of RB/E2F leading to DNA methyltransferase 3A overexpression in lung cancer. Clin. Cancer Res. 18, 4325–4333 (2012).

    CAS  PubMed  Google Scholar 

  143. Chen, L. et al. MDM2 recruitment of lysine methyltransferases regulates p53 transcriptional output. EMBO J. 29, 2538–2552 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Mungamuri, S. K. et al. p53-mediated heterochromatin reorganization regulates its cell fate decisions. Nature Struct. Mol. Biol. 19, 478–484 (2012).

    CAS  Google Scholar 

  145. Onder, T. T. et al. Chromatin-modifying enzymes as modulators of reprogramming. Nature 483, 598–602 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Peters, A. H. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).

    CAS  PubMed  Google Scholar 

  147. Bouska, A., Lushnikova, T., Plaza, S. & Eischen, C. M. Mdm2 promotes genetic instability and transformation independent of p53. Mol. Cell. Biol. 28, 4862–4874 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Kadakia, M., Brown, T. L., McGorry, M. M. & Berberich, S. J. MdmX inhibits Smad transactivation. Oncogene 21, 8776–8785 (2002).

    CAS  PubMed  Google Scholar 

  149. Wunderlich, M., Ghosh, M., Weghorst, K. & Berberich, S. J. MdmX represses E2F1 transactivation. Cell Cycle 3, 472–478 (2004).

    CAS  PubMed  Google Scholar 

  150. Matijasevic, Z., Krzywicka-Racka, A., Sluder, G. & Jones, S. N. MdmX regulates transformation and chromosomal stability in p53-deficient cells. Cell Cycle 7, 2967–2973 (2008).

    CAS  PubMed  Google Scholar 

  151. Busuttil, V. et al. NF-κB inhibits T-cell activation-induced, p73-dependent cell death by induction of MDM2. Proc. Natl Acad. Sci. USA 107, 18061–18066 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Chen, J. et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488, 522–526 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Rao, S. K., Edwards, J., Joshi, A. D., Siu, I. M. & Riggins, G. J. A survey of glioblastoma genomic amplifications and deletions. J. Neurooncol 96, 169–179 (2010).

    CAS  PubMed  Google Scholar 

  154. Minamino, T. et al. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nature Med. 15, 1082–1087 (2009).

    CAS  PubMed  Google Scholar 

  155. Tomita, K. et al. p53/p66Shc-mediated signaling contributes to the progression of non-alcoholic steatohepatitis in humans and mice. J. Hepatol 57, 837–843 (2012).

    CAS  PubMed  Google Scholar 

  156. Hallenborg, P. et al. Mdm2 controls CREB-dependent transactivation and initiation of adipocyte differentiation. Cell Death Differ. 19, 1381–1389 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Crago, A. M. & Singer, S. Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr. Opin. Oncol. 23, 373–378 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Issaeva, N. et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nature Med. 10, 1321–1328 (2004).

    CAS  PubMed  Google Scholar 

  159. Nieves-Neira, W. et al. DNA protein cross-links produced by NSC 652287, a novel thiophene derivative active against human renal cancer cells. Mol. Pharmacol. 56, 478–484 (1999).

    CAS  PubMed  Google Scholar 

  160. Rivera, M. I. et al. Selective toxicity of the tricyclic thiophene NSC 652287 in renal carcinoma cell lines: differential accumulation and metabolism. Biochem. Pharmacol. 57, 1283–1295 (1999).

    CAS  PubMed  Google Scholar 

  161. Di Conza, G. et al. IGF-1R/MDM2 relationship confers enhanced sensitivity to RITA in Ewing sarcoma cells. Mol. Cancer Ther. 11, 1247–1256 (2012).

    CAS  PubMed  Google Scholar 

  162. Kojima, K., Burks, J. K., Arts, J. & Andreeff, M. The novel tryptamine derivative JNJ-26854165 induces wild-type p53- and E2F1-mediated apoptosis in acute myeloid and lymphoid leukemias. Mol. Cancer Ther. 9, 2545–2557 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Christophorou, M. A., Ringshausen, I., Finch, A. J., Swigart, L. B. & Evan, G. I. The pathological response to DNA damage does not contribute to p53-mediated tumour suppression. Nature 443, 214–217 (2006).

    CAS  PubMed  Google Scholar 

  164. Valentin-Vega, Y. A., Okano, H. & Lozano, G. The intestinal epithelium compensates for p53-mediated cell death and guarantees organismal survival. Cell Death Differ. 15, 1772–1781 (2008).

    CAS  PubMed  Google Scholar 

  165. Valentin-Vega, Y. A., Box, N., Terzian, T. & Lozano, G. Mdm4 loss in the intestinal epithelium leads to compartmentalized cell death but no tissue abnormalities. Differentiation 77, 442–449 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Boesten, L. S. et al. Mdm2, but not Mdm4, protects terminally differentiated smooth muscle cells from p53-mediated caspase-3-independent cell death. Cell Death Differ. 13, 2089–2098 (2006).

    CAS  PubMed  Google Scholar 

  167. Maetens, M. et al. Distinct roles of Mdm2 and Mdm4 in red cell production. Blood 109, 2630–2633 (2007).

    CAS  PubMed  Google Scholar 

  168. Grier, J. D., Xiong, S., Elizondo-Fraire, A. C., Parant, J. M. & Lozano, G. Tissue-specific differences of p53 inhibition by Mdm2 and Mdm4. Mol. Cell. Biol. 26, 192–198 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Xiong, S., Van Pelt, C. S., Elizondo-Fraire, A. C., Fernandez-Garcia, B. & Lozano, G. Loss of Mdm4 results in p53-dependent dilated cardiomyopathy. Circulation 115, 2925–2930 (2007).

    CAS  PubMed  Google Scholar 

  170. Macias, E. et al. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell 18, 231–243 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Itahana, K. et al. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 12, 355–366 (2007).

    CAS  PubMed  Google Scholar 

  172. Cheng, X. et al. Activation of murine double minute 2 by Akt in mammary epithelium delays mammary involution and accelerates mammary tumorigenesis. Cancer Res. 70, 7684–7689 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Popowicz, G. M. et al. Structures of low molecular weight inhibitors bound to MDMX and MDM2 reveal new approaches for p53-MDMX/MDM2 antagonist drug discovery. Cell Cycle 9, 1104–1111 (2010).

    CAS  PubMed  Google Scholar 

  174. Rew, Y. et al. Structure-based design of novel inhibitors of the MDM2-p53 interaction. J. Med. Chem. 55, 4936–4954 (2012).

    CAS  PubMed  Google Scholar 

  175. Liu, M. et al. D-peptide inhibitors of the p53-MDM2 interaction for targeted molecular therapy of malignant neoplasms. Proc. Natl Acad. Sci. USA 107, 14321–14326 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Studies relevant to the topics discussed here were supported by grants from the US National Institutes of Health (R01-CA61449 and R03-MH089489-01), Cancer Center Support Grant CA014195 and a sanofi-aventis sponsored research grant awarded to G.M.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey M. Wahl.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

ClinicalTrials.gov

National Cancer Institute Drug Dictionary

NCI Drug Dictionary

17-AAG

AZD6244

cisplatin

RG7112

topotecan

vemurafenib

FURTHER INFORMATION

Geoffrey M. Wahl's homepage

Center for Genomic Science

Glossary

Antagonists

Chemical substances that interfere with or inhibit the physiological activity of other biological entities such as proteins or enzymes.

miRNAs

Derived from an RNA polymerase II transcribed precursor, miRNAs are a class of non-protein coding mRNA that reduces the expression of cellular proteins through various mechanisms.

Hemizygous

A genetic status in which one allelic copy of a gene is deleted or otherwise inactivated.

Haploinsufficiency

A genetic status in which a single wild-type copy of an allelic pair is present, but the level of expression of the product is insufficient to give wild-type function.

Myeloablation

The depletion of bone marrow cells.

Neoadjuvant therapy

Administration of therapeutic agents to reduce tumour volume before giving a primary treatment such as surgery.

IC50

The half-maximal inhibitory concentration, which is the concentration of a compound causing 50% inhibition of biological or biochemical function.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, M., Li, YC. & Wahl, G. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 13, 83–96 (2013). https://doi.org/10.1038/nrc3430

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3430

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer