Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer

Key Points

  • Recent cancer genome deep sequencing efforts have revealed an unanticipated high frequency of mutations in G proteins and G-protein-coupled receptors (GPCRs) in most tumour types.

  • A striking 4.2% of all tumour sequences deposited to date show activating mutations in GNAS (a complex locus that encodes Gαs). Transforming mutations in GNAS have been well documented in human thyroid and pituitary tumours, and recent sequencing efforts have shown these mutations to be present in a wide variety of additional tumour types, including colon cancer, hepatocellular carcinoma, and parathyroid, ovarian, endometrial, biliary tract and pancreatic tumours.

  • Mutually exclusive activating mutations in GNAQ or GNA11 (encoding Gαq family members) occur in 5.6% of tumours, and they are present in 66% and 6% of melanomas arising in the eye and skin, respectively, where they can act as driver oncogenes.

  • Hotspot mutations in Gαs (R201 and Q227) as well as Gαq and Gα11 (R183 and Q209) disrupt the GTPase activity, thereby leading to constitutive activity and persistent signalling.

  • Nearly 20% of human cancers harbour mutations in GPCRs.

  • The most frequently mutated GPCRs include thyroid-stimulating hormone receptor (TSHR), Smoothened (SMO), glutamate metabotropic receptors (GRMs), members of the adhesion family of GPCRs and receptors for bioactive lipid mediators such as lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) that accumulate in the tumour microenvironment.

  • Many GPCR mutations are still uncharacterized with respect to their potential contribution to tumorigenesis and cancer progression.

  • Aberrant expression, overexpression or signal reprogramming of GPCRs and G proteins in tumour cells can contribute to cancer development and progression. These alterations may arise from cancer-specific changes in gene copy number, as well as from other genetic, epigenetic and post-translational changes resulting in higher protein expression, thereby enhancing tumour progression and metastasis.

  • Detailed three dimensional structures of GPCRs in various activation states can now help to explain the functional impact of cancer-associated GPCR mutations, and guide the rational design of signalling-selective GPCR agonists, antagonists and allosteric modulators.

  • G proteins, GPCRs and their linked signalling circuitry represent novel therapeutic targets for cancer prevention and treatment.

Abstract

Aberrant expression and activity of G proteins and G-protein-coupled receptors (GPCRs) are frequently associated with tumorigenesis. Deep sequencing studies show that 4.2% of tumours carry activating mutations in GNAS (encoding Gαs), and that oncogenic activating mutations in genes encoding Gαq family members (GNAQ or GNA11) are present in 66% and 6% of melanomas arising in the eye and skin, respectively. Furthermore, nearly 20% of human tumours harbour mutations in GPCRs. Many human cancer-associated viruses also express constitutively active viral GPCRs. These studies indicate that G proteins, GPCRs and their linked signalling circuitry represent novel therapeutic targets for cancer prevention and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cancer-related mutations in human TSHR projected onto a three-dimensional model.
Figure 2: The residue positions most frequently mutated in cancers in the context of different functional states of the G protein α-subunits.

Similar content being viewed by others

References

  1. Pierce, K. L., Premont, R. T. & Lefkowitz, R. J. Seven-transmembrane receptors. Nature Rev. Mol. Cell Biol. 3, 639–650 (2002).

    CAS  Google Scholar 

  2. Ma, P. & Zemmel, R. Value of novelty? Nature Rev. Drug Discov. 1, 571–572 (2002).

    Article  CAS  Google Scholar 

  3. Rask-Andersen, M., Almen, M. S. & Schioth, H. B. Trends in the exploitation of novel drug targets. Nature Rev. Drug Discov. 10, 579–590 (2011).

    Article  CAS  Google Scholar 

  4. Rosenbaum, D. M., Rasmussen, S. G. & Kobilka, B. K. The structure and function of G-protein-coupled receptors. Nature 459, 356–363 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. DeWire, S. M., Ahn, S., Lefkowitz, R. J. & Shenoy, S. K. β-arrestins and cell signaling. Annu. Rev. Physiol. 69, 483–510 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Garcia-Marcos, M., Ghosh, P. & Farquhar, M. G. GIV is a nonreceptor GEF for Gαi with a unique motif that regulates Akt signaling. Proc. Natl Acad. Sci. USA 106, 3178–3183 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marty, C. & Ye, R. D. Heterotrimeric G protein signaling outside the realm of seven transmembrane domain receptors. Mol. Pharmacol. 78, 12–18 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Knoblich, J. A. Asymmetric cell division: recent developments and their implications for tumour biology. Nature Rev. Mol. Cell Biol. 11, 849–860 (2010).

    Article  CAS  Google Scholar 

  9. Mauser, J. F. & Prehoda, K. E. Inscuteable regulates the Pins-Mud spindle orientation pathway. PLoS ONE 7, e29611 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Salon, J. A., Lodowski, D. T. & Palczewski, K. The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol. Rev. 63, 901–937 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu, F. et al. Structure of an agonist-bound human A2A adenosine receptor. Science 332, 322–327 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rasmussen, S. G. et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature 477, 549–555 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wu, B. et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330, 1066–1071 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ballesteros, J. A. et al. Activation of the β2-adrenergic receptor involves disruption of an ionic lock between the cytoplasmic ends of transmembrane segments 3 and 6. J. Biol. Chem. 276, 29171–29177 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Montaner, S., Kufareva, I., Abagyan, R. & Gutkind, J. S. Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu. Rev. Pharmacol. Toxicol. 53, 331–354 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Smit, M. J. et al. Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity. Annu. Rev. Pharmacol. Toxicol. 47, 53–87 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Han, X., Tachado, S. D., Koziel, H. & Boisvert, W. A. Leu1283.43 (L128) and Val2476.40 (V247) of CXCR1 are critical amino acid residues for G protein coupling and receptor activation. PLoS ONE 7, e42765 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Young, D., Waitches, G., Birchmeier, C., Fasano, O. & Wigler, M. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45, 711–719 (1986). This ground-breaking work was the first study to identify a gene that encodes a seven-transmembrane receptor, named MAS1 , as an oncogene.

    Article  CAS  PubMed  Google Scholar 

  19. Julius, D., Livelli, T. J., Jessell, T. M. & Axel, R. Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science 244, 1057–1062 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Gutkind, J. S., Novotny, E. A., Brann, M. R. & Robbins, K. C. Muscarinic acetylcholine receptor subtypes as agonist-dependent oncogenes. Proc. Natl Acad. Sci. USA 88, 4703–4707 (1991). This study revealed the transforming potential of normal GPCRs when stimulated by the unrestricted availability of their ligands, and that G protein coupling-specificity is a major determinant of the oncogenic activity of GPCRs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allen, L. F., Lefkowitz, R. J., Caron, M. G. & Cotecchia, S. G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the α1B-adrenergic receptor enhances mitogenesis and tumorigenicity. Proc. Natl Acad. Sci. USA 88, 11354–11358 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parma, J. et al. Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid adenomas. Nature 365, 649–651 (1993). This study provided the first description of a mutant GPCR that is involved in tumorigenesis.

    Article  CAS  PubMed  Google Scholar 

  23. Dhanasekaran, N., Heasley, L. E. & Johnson, G. L. G protein-coupled receptor systems involved in cell growth and oncogenesis. Endocr. Rev. 16, 259–270 (1995).

    Article  CAS  PubMed  Google Scholar 

  24. Dorsam, R. T. & Gutkind, J. S. G-protein-coupled receptors and cancer. Nature Rev. Cancer 7, 79–94 (2007).

    Article  CAS  Google Scholar 

  25. Weinstein, L. S. et al. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N. Engl. J. Med. 325, 1688–1695 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Landis, C. A. et al. GTPase inhibiting mutations activate the α chain of Gs and stimulate adenylyl cyclase in human pituitary tumours. Nature 340, 692–696 (1989). This seminal manuscript provided a causal link between the mutational activation of a G protein and human tumours.

    Article  CAS  PubMed  Google Scholar 

  27. Lyons, J. et al. Two G protein oncogenes in human endocrine tumors. Science 249, 655–659 (1990).

    Article  CAS  PubMed  Google Scholar 

  28. Kalinec, G., Nazarali, A. J., Hermouet, S., Xu, N. & Gutkind, J. S. Mutated α subunit of the Gq protein induces malignant transformation in NIH 3T3 cells. Mol. Cell. Biol. 12, 4687–4693 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu, N., Bradley, L., Ambdukar, I. & Gutkind, J. S. A mutant α subunit of G12 potentiates the eicosanoid pathway and is highly oncogenic in NIH 3T3 cells. Proc. Natl Acad. Sci. USA 90, 6741–6745 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, N., Voyno-Yasenetskaya, T. & Gutkind, J. S. Potent transforming activity of the G13 α subunit defines a novel family of oncogenes. Biochem. Biophys. Res. Commun. 201, 603–609 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Chan, A. M. et al. Expression cDNA cloning of a transforming gene encoding the wild-type Gα12 gene product. Mol. Cell. Biol. 13, 762–768 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Drews, R. T., Gravel, R. A. & Collu, R. Identification of G protein α subunit mutations in human growth hormone (GH)- and GH/prolactin-secreting pituitary tumors by single-strand conformation polymorphism (SSCP) analysis. Mol. Cell Endocrinol. 87, 125–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Wilson, C. H., McIntyre, R. E., Arends, M. J. & Adams, D. J. The activating mutation R201C in GNAS promotes intestinal tumourigenesis in ApcMin./+ mice through activation of Wnt and ERK1/2 MAPK pathways. Oncogene 29, 4567–4575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Furukawa, T. et al. Whole-exome sequencing uncovers frequent GNAS mutations in intraductal papillary mucinous neoplasms of the pancreas. Sci. Rep. 1, 161 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu, J. et al. Recurrent GNAS mutations define an unexpected pathway for pancreatic cyst development. Sci. Transl Med. 3, 92ra66 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ong, C. K. et al. Exome sequencing of liver fluke-associated cholangiocarcinoma. Nature Genet. 44, 690–693 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Castellone, M. D., Teramoto, H., Williams, B. O., Druey, K. M. & Gutkind, J. S. Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis. Science 310, 1504–1510 (2005).

    CAS  PubMed  Google Scholar 

  38. Gupta, R. A. & Dubois, R. N. Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Rev. Cancer 1, 11–21 (2001).

    Article  CAS  Google Scholar 

  39. Chan, A. T., Ogino, S. & Fuchs, C. S. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 356, 2131–2142 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Wood, L. D. et al. The genomic landscapes of human breast and colorectal cancers. Science 318, 1108–1113 (2007).

    CAS  PubMed  Google Scholar 

  41. Berman, D. M., Wilkie, T. M. & Gilman, A. G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein α subunits. Cell 86, 445–452 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Van Raamsdonk, C. D. et al. Mutations in GNA11 in uveal melanoma. N. Engl. J. Med. 363, 2191–2199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kusters-Vandevelde, H. V. et al. Improved discrimination of melanotic schwannoma from melanocytic lesions by combined morphological and GNAQ mutational analysis. Acta Neuropathol. 120, 755–764 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Van Raamsdonk, C. D. et al. Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457, 599–602 (2009). This work identified the first human malignancy driven primarily by the oncogenic activation of genes encoding members of the Gα q family of heterotrimeric G proteins.

    Article  CAS  PubMed  Google Scholar 

  45. Garcia-Marcos, M., Ghosh, P. & Farquhar, M. G. Molecular basis of a novel oncogenic mutation in GNAO1. Oncogene 30, 2691–2696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010). This ground-breaking study revealed the unexpected high frequency of somatic mutations in genes encoding GPCRs in most highly prevalent human malignancies.

    Article  CAS  PubMed  Google Scholar 

  47. Schuijers, J. & Clevers, H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J. 31, 2685–2696 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Epstein, E. H. Basal cell carcinomas: attack of the hedgehog. Nature Rev. Cancer 8, 743–754 (2008).

    Article  CAS  Google Scholar 

  49. Rubin, L. L. & de Sauvage, F. J. Targeting the Hedgehog pathway in cancer. Nature Rev. Drug Discov. 5, 1026–1033 (2006).

    Article  CAS  Google Scholar 

  50. Zhao, Y., Tong, C. & Jiang, J. Hedgehog regulates smoothened activity by inducing a conformational switch. Nature 450, 252–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Lum, L. & Beachy, P. A. The Hedgehog response network: sensors, switches, and routers. Science 304, 1755–1759 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Xie, J. et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 391, 90–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  53. Brastianos, P. K. et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nature Genet. 45, 285–289. (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Clark, V. E. et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science 339, 1077–1080 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Scales, S. J. & de Sauvage, F. J. Mechanisms of Hedgehog pathway activation in cancer and implications for therapy. Trends Pharmacol. Sci. 30, 303–312 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Mitra, D. et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature 491, 449–453 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bjarnadottir, T. K. et al. The human and mouse repertoire of the adhesion family of G-protein-coupled receptors. Genomics 84, 23–33 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Lagerstrom, M. C. & Schioth, H. B. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nature Rev. Drug Discov. 7, 339–357 (2008).

    Article  Google Scholar 

  59. Paavola, K. J. & Hall, R. A. Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation. Mol. Pharmacol. 82, 777–783 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McMillan, D. R. & White, P. C. Studies on the very large G protein-coupled receptor: from initial discovery to determining its role in sensorineural deafness in higher animals. Adv. Exp. Med. Biol. 706, 76–86 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Shiratsuchi, T., Nishimori, H., Ichise, H., Nakamura, Y. & Tokino, T. Cloning and characterization of BAI2 and BAI3, novel genes homologous to brain-specific angiogenesis inhibitor 1 (BAI1). Cytogenet. Cell Genet. 79, 103–108 (1997).

    Article  CAS  PubMed  Google Scholar 

  62. Park, D. et al. BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450, 430–434 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Cork, S. M. & Van Meir, E. G. Emerging roles for the BAI1 protein family in the regulation of phagocytosis, synaptogenesis, neurovasculature, and tumor development. J. Mol. Med. 89, 743–752 (2011).

    Article  CAS  PubMed  Google Scholar 

  64. Nishimura, T., Honda, H. & Takeichi, M. Planar cell polarity links axes of spatial dynamics in neural-tube closure. Cell 149, 1084–1097 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Caddy, J. et al. Epidermal wound repair is regulated by the planar cell polarity signaling pathway. Dev. Cell 19, 138–147 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Arac, D. et al. A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis. EMBO J. 31, 1364–1378 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Prickett, T. D. et al. Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nature Genet. 43, 1119–1126 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Teh, J. L. & Chen, S. Glutamatergic signaling in cellular transformation. Pigment Cell. Melanoma Res. 25, 331–342 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Muller, A. et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 410, 50–56 (2001).

    Article  CAS  PubMed  Google Scholar 

  70. Zlotnik, A., Burkhardt, A. M. & Homey, B. Homeostatic chemokine receptors and organ-specific metastasis. Nature Rev. Immunol. 11, 597–606 (2011).

    Article  CAS  Google Scholar 

  71. Maceyka, M., Harikumar, K. B., Milstien, S. & Spiegel, S. Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol. 22, 50–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  72. Houben, A. J. & Moolenaar, W. H. Autotaxin and LPA receptor signaling in cancer. Cancer Metastasis Rev. 30, 557–565 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Yagi, H. et al. A synthetic biology approach reveals a CXCR4-G13-Rho signaling axis driving transendothelial migration of metastatic breast cancer cells. Sci Signal. 4, ra60 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Haass, N. K. & Herlyn, M. Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J. Investig. Dermatol. Symp. Proc. 10, 153–163 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Vaque, J. P. et al. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors. Mol. Cell 49, 94–108 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Yu, F. X. et al. Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling. Cell 150, 780–791 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Martin, D. & Gutkind, J. S. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene 27 (Suppl. 2), S31–S42 (2008).

    Article  CAS  PubMed  Google Scholar 

  79. Arvanitakis, L., Geras-Raaka, E., Varma, A., Gershengorn, M. C. & Cesarman, E. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385, 347–350 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Wall, M. A. et al. The structure of the G protein heterotrimer Giα1β1γ2 . Cell 83, 1047–1058 (1995).

    Article  CAS  PubMed  Google Scholar 

  81. Rasmussen, S. G. et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature 469, 175–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Waldo, G. L. et al. Kinetic scaffolding mediated by a phospholipase C-β and Gq signaling complex. Science 330, 974–980 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Forbes, S. A. et al. COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945–D950 (2011). This article describes the COSMIC database, which provides a wealth of information on somatic mutations in cancers, including the identification of specific gene mutations and their frequency in tumours of various tissues.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The mutation data were obtained from the Wellcome Trust Sanger Institute COSMIC web site. This work was supported by the Intramural Research Program of the US National Institutes of Health and the US National Institute of Dental and Craniofacial Research (to J.S.G. and M.O.), extramural grants U01 GM094612 and partial funding from R01 GM071872 and U54 GM094618 (to T.M.H. and I.K.) and grant 152434 from Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) (to J.V.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Silvio Gutkind.

Ethics declarations

Competing interests

This work was supported by the Intramural Research Program of the US National Institutes of Health, the US National Institute of Dental and Craniofacial Research (to J.S.G. and M.O.) as well as extramural grants U01 GM094612, and partial funding from R01 GM071872, and U54 GM094618 (to T.M.H. and I.K.); and grant 152434 from Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) (to J.V.P.).

Related links

Supplementary information

Supplementary information S1 (table)

Frequency of somatic mutation in G protein subunits and G protein coupled receptors (GPCRs). (XLS 275 kb)

Supplementary information S2 (table)

G protein and G protein coupled receptors (GPCRs) genes with a significant number of mutations relative to their respective tissue type background mutation rate. (XLS 69 kb)

Supplementary information S3 (table)

G Protein and G protein coupled receptor (GPCR) hotspot mutations. (XLS 121 kb)

Supplementary information S4 (table)

Complete list of G Protein and G protein coupled receptor (GPCR) somatic mutants reported in cancer. (XLSX 1546 kb)

Glossary

G-protein-coupled receptors

(GPCRs). A family of receptor proteins that have seven-transmembrane domains, an extracellular amino terminus and an intracellular carboxyl terminus. They respond to stimuli outside the cell and transduce signals into the cells through interactions with intracellular signalling proteins, including G proteins.

G proteins

A family of guanine-nucleotide-binding proteins that are important for signal transduction. Their activity is regulated by binding and hydrolysing GTP such that the active state is GTP-bound, whereas the inactive form is in a GDP-bound state. Heterotrimeric G proteins consist of α-, β- and γ-subunits.

Regulators of G protein signalling

(RGS). GTPase-accelerating proteins that lead to heterotrimeric G protein inactivation by promoting hydrolysis of the GTP of G to GDP.

Arrestins

A family of proteins that interact with the carboxyl termini of G-protein-coupled receptors and help to mediate receptor desensitization, internalization, recycling and signalling.

Guanine-nucleotide exchange factors

(GEFs). Proteins that stimulate the release of GDP to allow exchange for GTP, thereby promoting G protein activation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Hayre, M., Vázquez-Prado, J., Kufareva, I. et al. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 13, 412–424 (2013). https://doi.org/10.1038/nrc3521

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3521

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer