Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting

Key Points

  • Oncogenic mutation of the phosphatidylinositol 3-kinase (PI3K) catalytic isoform p110α is frequent in human cancers, whereas the catalytic isoforms p110β, p110δ and p110γ are rarely mutated but can be overexpressed. Mutation or loss of expression of regulatory isoform p85α is also associated with cancer.

  • Although class IA PI3K catalytic isoforms share structural and substrate similarities, they have specific roles in mediating PI3K signalling in different physiological and oncogenic contexts.

  • Cancer cells with upregulation or mutation of receptor tyrosine kinases (RTKs), oncogenic RAS mutations or activating p110α mutations are highly dependent on p110α, even in the presence of mutation or loss of PTEN.

  • In many cases, tumorigenesis that is driven by PTEN loss depends on p110β. However, PI3K isoform dependence in PTEN-deficient transformation may be governed by other PI3K isoforms that are dominant in a tissue or compartment, or shifted by coexisting oncogenic mutations.

  • Isoforms p110α, p110δ and p110γ bind to and are activated by RAS subfamily GTPases, while p110β binds to and is activated by RHO subfamily GTPases RAC1 and CDC42.

  • Non-isoform-selective pan-PI3K inhibitors have not yielded exciting clinical results, but second-generation PI3K drugs that target individual PI3K isoforms may be able to achieve greater therapeutic efficacy by offering improved specificity and reduced toxicity.

  • The p110δ-selective inhibitor idelalisib has been remarkably effective in clinical trials for patients with B cell malignancies, while p110α-selective inhibitors have shown promise in early-phase trials for patients with solid tumours with PIK3CA mutations or HER2 amplification.

  • Intrinsic and acquired resistance mechanisms are a continuing challenge for PI3K-directed therapeutic approaches. To overcome this, combination therapies and alternative dosing strategies are being developed and evaluated in both preclinical and clinical settings.

Abstract

Phosphatidylinositol 3-kinases (PI3Ks) are crucial coordinators of intracellular signalling in response to extracellular stimuli. Hyperactivation of PI3K signalling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of specific PI3K isoforms in normal and oncogenic signalling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The PI3K family comprises several classes and isoforms.
Figure 2: Signalling by class I, II and III PI3K isoforms.
Figure 3: Divergent roles of class I PI3K catalytic isoforms in different signalling contexts.
Figure 4: An overview of PI3K inhibitors and their combination with other therapeutics.

Similar content being viewed by others

References

  1. Engelman, J. A., Luo, J. & Cantley, L. C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nature Rev. Genet. 7, 606–619 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, P., Cheng, H., Roberts, T. M. & Zhao, J. J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nature Rev. Drug Discov. 8, 627–644 (2009).

    Article  CAS  Google Scholar 

  3. Vanhaesebroeck, B., Guillermet-Guibert, J., Graupera, M. & Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nature Rev. Mol. Cell Biol. 11, 329–341 (2010).

    Article  CAS  Google Scholar 

  4. Engelman, J. A. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nature Rev. Cancer 9, 550–562 (2009).

    Article  CAS  Google Scholar 

  5. Mellor, P., Furber, L. A., Nyarko, J. N. & Anderson, D. H. Multiple roles for the p85α isoform in the regulation and function of PI3K signalling and receptor trafficking. Biochem. J. 441, 23–37 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Okkenhaug, K. & Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nature Rev. Immunol. 3, 317–330 (2003).

    Article  CAS  Google Scholar 

  7. Falasca, M. & Maffucci, T. Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem. J. 443, 587–601 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Falasca, M. et al. The role of phosphoinositide 3-kinase C2 α in insulin signaling. J. Biol. Chem. 282, 28226–28236 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Maffucci, T. et al. Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J. Cell Biol. 169, 789–799 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoshioka, K. et al. Endothelial PI3K-C2α, a class II PI3K, has an essential role in angiogenesis and vascular barrier function. Nature Med. 18, 1560–1569 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Franco, I. et al. PI3K class II α controls spatially restricted endosomal PtdIns3P and Rab11 activation to promote primary cilium function. Dev. Cell 28, 647–658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schu, P. V. et al. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260, 88–91 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Volinia, S. et al. A human phosphatidylinositol 3-kinase complex related to the yeast Vps34p-Vps15p protein sorting system. EMBO J. 14, 3339–3348 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Backer, J. M. The regulation & function of class III PI3Ks: novel roles for Vps34. Biochem. J. 410, 1–17 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Blondeau, F. et al. Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum. Mol. Genet. 9, 2223–2229 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Lu, N. et al. Two PI 3-kinases and one PI 3-phosphatase together establish the cyclic waves of phagosomal PtdIns3P critical for the degradation of apoptotic cells. PLoS Biol. 10, e1001245 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Velichkova, M. et al. Drosophila Mtm and class II PI3K coregulate a PI3P pool with cortical and endolysosomal functions. J. Cell Biol. 190, 407–425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao, C., Backer, J. M., Laporte, J., Bedrick, E. J. & Wandinger-Ness, A. Sequential actions of myotubularin lipid phosphatases regulate endosomal PI3P and growth factor receptor trafficking. Mol. Biol. Cell 19, 3334–3346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Parsons, R. Human cancer, PTEN and the PI-3 kinase pathway. Semin. Cell Dev. Biol. 15, 171–176 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Song, M. S., Salmena, L. & Pandolfi, P. P. The functions and regulation of the PTEN tumour suppressor. Nature Rev. Mol. Cell Biol. 13, 283–296 (2012).

    Article  CAS  Google Scholar 

  21. Chang, H. W. et al. Transformation of chicken cells by the gene encoding the catalytic subunit of PI3-kinase. Science 276, 1848–1850 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Klippel, A. et al. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell. Biol. 16, 4117–4127 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao, J. J. et al. The oncogenic properties of mutant p110α and p110β phosphatidylinositol 3-kinases in human mammary epithelial cells. Proc. Natl Acad. Sci. USA 102, 18443–18448 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, J. J. et al. Human mammary epithelial cell transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell 3, 483–495 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Isakoff, S. J. et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 65, 10992–11000 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Kang, S., Bader, A. G. & Vogt, P. K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl Acad. Sci. USA 102, 802–807 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Engelman, J. A. et al. Effective use of PI3K and MEK inhibitors to treat mutant Kras G12D and PIK3CA H1047R murine lung cancers. Nature Med. 14, 1351–1356 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, P. et al. Oncogenic PIK3CA-driven mammary tumors frequently recur via PI3K pathway-dependent and PI3K pathway-independent mechanisms. Nature Med. 17, 1116–1120 (2011). This study used an inducible GEMM of PIK3CAH1047R-driven mammary tumours to identify potential mechanisms of resistance to PI3K-targeted therapy.

    Article  CAS  PubMed  Google Scholar 

  30. Yuan, W. et al. Conditional activation of Pik3caH1047R in a knock-in mouse model promotes mammary tumorigenesis and emergence of mutations. Oncogene 32, 318–326 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Kinross, K. M. et al. An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice. J. Clin. Invest. 122, 553–557 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wu, R. et al. Type I to type II ovarian carcinoma progression: mutant Trp53 or Pik3ca confers a more aggressive tumor phenotype in a mouse model of ovarian cancer. Am. J. Pathol. 182, 1391–1399 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, C. H. et al. The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations. Science 318, 1744–1748 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, L. & Vogt, P. K. Hot-spot mutations in p110α of phosphatidylinositol 3-kinase (pI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle 9, 596–600 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. Miled, N. et al. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science 317, 239–242 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Burke, J. E., Perisic, O., Masson, G. R., Vadas, O. & Williams, R. L. Oncogenic mutations mimic and enhance dynamic events in the natural activation of phosphoinositide 3-kinase p110a (PIK3CA). Proc. Natl Acad. Sci. USA 109, 15259–15264 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hao, Y. et al. Gain of interaction with IRS1 by p110a-helical domain mutants is crucial for their oncogenic functions. Cancer Cell 23, 583–593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mandelker, D. et al. A frequent kinase domain mutation that changes the interaction between PI3Ka and the membrane. Proc. Natl Acad. Sci. USA 106, 16996–17001 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Orloff, M. S. et al. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am. J. Hum. Genet. 92, 76–80 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurek, K. C. et al. Somatic mosaic activating mutations in PIK3CA cause CLOVES syndrome. Am. J. Hum. Genet. 90, 1108–1115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riviere, J. B. et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nature Genet. 44, 934–940 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Rios, J. J. et al. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly. Hum. Mol. Genet. 22, 444–451 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Angulo, I. et al. Phosphoinositide 3-kinase δ gene mutation predisposes to respiratory infection and airway damage. Science 342, 866–871 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lucas, C. L. et al. Dominant-activating germline mutations in the gene encoding the PI3K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nature Immunol. 15, 88–97 (2014).

    Article  CAS  Google Scholar 

  45. Kan, Z. et al. Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466, 869–873 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Dbouk, H. A. et al. Characterization of a tumor-associated activating mutation of the p110β PI3-kinase. PLoS ONE 8, e63833 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dbouk, H. A., Pang, H., Fiser, A. & Backer, J. M. A biochemical mechanism for the oncogenic potential of the p110β catalytic subunit of phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA 107, 19897–19902 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang, X. et al. Structure of lipid kinase p110β–p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism. Mol. Cell 41, 567–578 (2011). In references 47 and 48, biochemical and structural studies were used to show that p85 inhibition of p110β is different from its inhibition of p110α.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vogt, P. K. PI3K p110β: more tightly controlled or constitutively active? Mol. Cell 41, 499–501 (2011). This paper provides a commentary on how the studies in references 47 and 48 together may indicate that p110β is a more basally active isoform than p110α.

    Article  CAS  PubMed  Google Scholar 

  50. Sawyer, C. et al. Regulation of breast cancer cell chemotaxis by the phosphoinositide 3-kinase p110δ. Cancer Res. 63, 1667–1675 (2003).

    CAS  PubMed  Google Scholar 

  51. Kang, S., Denley, A., Vanhaesebroeck, B. & Vogt, P. K. Oncogenic transformation induced by the p110β, -γ, and -δ isoforms of class I phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA 103, 1289–1294 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Philp, A. J. et al. The phosphatidylinositol 3′-kinase p85α gene is an oncogene in human ovarian and colon tumors. Cancer Res. 61, 7426–7429 (2001).

    CAS  PubMed  Google Scholar 

  53. Cheung, L. W. et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 1, 170–185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Urick, M. E. et al. PIK3R1 (p85α) is somatically mutated at high frequency in primary endometrial cancer. Cancer Res. 71, 4061–4067 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jaiswal, B. S. et al. Somatic mutations in p85α promote tumorigenesis through class IA PI3K activation. Cancer Cell 16, 463–474 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061–1068 (2008).

  57. Cizkova, M. et al. PIK3R1 underexpression is an independent prognostic marker in breast cancer. BMC Cancer 13, 545 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu, H. et al. Regulation of Class IA PI3-kinases: C2 domain-iSH2 domain contacts inhibit p85–p110α and are disrupted in oncogenic p85 mutants. Proc. Natl Acad. Sci. USA 106, 20258–20263 (2009). References 53, 55 and 58 show the transforming potential of cancer-associated iSH2 domain p85α mutants.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sun, M., Hillmann, P., Hofmann, B. T., Hart, J. R. & Vogt, P. K. Cancer-derived mutations in the regulatory subunit p85α of phosphoinositide 3-kinase function through the catalytic subunit p110α. Proc. Natl Acad. Sci. USA 107, 15547–15552 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Taniguchi, C. M. et al. The phosphoinositide 3-kinase regulatory subunit p85α can exert tumor suppressor properties through negative regulation of growth factor signaling. Cancer Res. 70, 5305–5315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Luo, J. et al. Modulation of epithelial neoplasia and lymphoid hyperplasia in PTEN+/− mice by the p85 regulatory subunits of phosphoinositide 3-kinase. Proc. Natl Acad. Sci. USA 102, 10238–10243 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Luo, J. & Cantley, L. C. The negative regulation of phosphoinositide 3-kinase signaling by p85 and it's implication in cancer. Cell Cycle 4, 1309–1312 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Cortes, I. et al. p85β phosphoinositide 3-kinase subunit regulates tumor progression. Proc. Natl Acad. Sci. USA 109, 11318–11323 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Biswas, K. et al. Essential role of class II phosphatidylinositol-3-kinase-C2α in sphingosine 1-phosphate receptor-1-mediated signaling and migration in endothelial cells. J. Biol. Chem. 288, 2325–2339 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Katso, R. M. et al. Phosphoinositide 3-Kinase C2β regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol. Biol. Cell 17, 3729–3744 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Elis, W. et al. Down-regulation of class II phosphoinositide 3-kinase α expression below a critical threshold induces apoptotic cell death. Mol. Cancer Res. 6, 614–623 (2008).

    Article  CAS  PubMed  Google Scholar 

  67. Diouf, B. et al. Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells. Nature Med. 17, 1298–1303 (2011).

    Article  CAS  PubMed  Google Scholar 

  68. Knobbe, C. B. & Reifenberger, G. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol. 13, 507–518 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Rao, S. K., Edwards, J., Joshi, A. D., Siu, I. M. & Riggins, G. J. A survey of glioblastoma genomic amplifications and deletions. J. Neurooncol. 96, 169–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Nobusawa, S. et al. Intratumoral patterns of genomic imbalance in glioblastomas. Brain Pathol. 20, 936–944 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, P. et al. Identification of somatic mutations in non-small cell lung carcinomas using whole-exome sequencing. Carcinogenesis 33, 1270–1276 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Harada, K., Truong, A. B., Cai, T. & Khavari, P. A. The class II phosphoinositide 3-kinase C2β is not essential for epidermal differentiation. Mol. Cell. Biol. 25, 11122–11130 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Harris, D. P. et al. Requirement for class II phosphoinositide 3-kinase C2α in maintenance of glomerular structure and function. Mol. Cell. Biol. 31, 63–80 (2011).

    Article  CAS  PubMed  Google Scholar 

  74. Norris, F. A., Atkins, R. C. & Majerus, P. W. The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J. Biol. Chem. 272, 23859–23864 (1997).

    Article  CAS  PubMed  Google Scholar 

  75. Gewinner, C. et al. Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16, 115–125 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fedele, C. G. et al. Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc. Natl Acad. Sci. USA 107, 22231–22236 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Stjernstrom, A. et al. Alterations of INPP4B, PIK3CA and pAkt of the PI3K pathway are associated with squamous cell carcinoma of the lung. Cancer Med. 3, 337–348 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hodgson, M. C. et al. Decreased expression and androgen regulation of the tumor suppressor gene INPP4B in prostate cancer. Cancer Res. 71, 572–582 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hirsch, D. S., Shen, Y., Dokmanovic, M. & Wu, W. J. pp60c-Src phosphorylates and activates vacuolar protein sorting 34 to mediate cellular transformation. Cancer Res. 70, 5974–5983 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Denley, A., Gymnopoulos, M., Kang, S., Mitchell, C. & Vogt, P. K. Requirement of phosphatidylinositol(3,4,5)trisphosphate in phosphatidylinositol 3-kinase-induced oncogenic transformation. Mol. Cancer Res. 7, 1132–1138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wei, Y. et al. EGFR-mediated Beclin 1 phosphorylation in autophagy suppression, tumor progression, and tumor chemoresistance. Cell 154, 1269–1284 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Bi, L., Okabe, I., Bernard, D. J. & Nussbaum, R. L. Early embryonic lethality in mice deficient in the p110β catalytic subunit of PI3-kinase. Mamm. Genome 13, 169–172 (2002).

    CAS  PubMed  Google Scholar 

  83. Bi, L., Okabe, I., Bernard, D. J., Wynshaw-Boris, A. & Nussbaum, R. L. Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110α subunit of phosphoinositide 3-kinase. J. Biol. Chem. 274, 10963–10968 (1999).

    Article  CAS  PubMed  Google Scholar 

  84. Ciraolo, E. et al. Phosphoinositide 3-kinase p110β activity: key role in metabolism and mammary gland cancer but not development. Sci. Signal. 1, ra3 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ciraolo, E. et al. Essential role of the p110β subunit of phosphoinositide 3-OH kinase in male fertility. Mol. Biol. Cell 21, 704–711 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Clayton, E. et al. A crucial role for the p110δ subunit of phosphatidylinositol 3-kinase in B cell development and activation. J. Exp. Med. 196, 753–763 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ali, K. et al. Essential role for the p110δ phosphoinositide 3-kinase in the allergic response. Nature 431, 1007–1011 (2004).

    Article  CAS  PubMed  Google Scholar 

  88. Okkenhaug, K. et al. Impaired B and T cell antigen receptor signaling in p110δ PI 3-kinase mutant mice. Science 297, 1031–1034 (2002).

    CAS  PubMed  Google Scholar 

  89. Jou, S. T. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol. Cell. Biol. 22, 8580–8591 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sasaki, T. et al. Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287, 1040–1046 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Yum, H. K. et al. Involvement of phosphoinositide 3-kinases in neutrophil activation and the development of acute lung injury. J. Immunol. 167, 6601–6608 (2001).

    Article  CAS  PubMed  Google Scholar 

  92. Martin, A. L., Schwartz, M. D., Jameson, S. C. & Shimizu, Y. Selective regulation of CD8 effector T cell migration by the p110γ isoform of phosphatidylinositol 3-kinase. J. Immunol. 180, 2081–2088 (2008).

    Article  CAS  PubMed  Google Scholar 

  93. Rameh, L. E., Chen, C. S. & Cantley, L. C. Phosphatidylinositol (3,4,5)P3 interacts with SH2 domains and modulates PI3-kinase association with tyrosine-phosphorylated proteins. Cell 83, 821–830 (1995).

    Article  CAS  PubMed  Google Scholar 

  94. Yu, J., Wjasow, C. & Backer, J. M. Regulation of the p85/p110α phosphatidylinositol 3′-kinase. Distinct roles for the n-terminal and c-terminal SH2 domains. J. Biol. Chem. 273, 30199–30203 (1998).

    Article  CAS  PubMed  Google Scholar 

  95. Yu, J. et al. Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. Mol. Cell. Biol. 18, 1379–1387 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Utermark, T. et al. The p110α and p110β isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. Genes Dev. 26, 1573–1586 (2012). In this study, GEMMs of oncogenic RTK-driven mammary tumors were used to identify a new mechanism in which p110β competes with p110α for RTK binding to modulate lipid kinase activity in response to RTK activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao, J. J. et al. The p110α isoform of PI3K is essential for proper growth factor signaling and oncogenic transformation. Proc. Natl Acad. Sci. USA 103, 16296–16300 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Knight, Z. A. et al. A pharmacological map of the PI3-K family defines a role for p110α in insulin signaling. Cell 125, 733–747 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Foukas, L. C. et al. Critical role for the p110α phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature 441, 366–370 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Sopasakis, V. R. et al. Specific roles of the p110α isoform of phosphatidylinsositol 3-kinase in hepatic insulin signaling and metabolic regulation. Cell. Metab. 11, 220–230 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Graupera, M. et al. Angiogenesis selectively requires the p110α isoform of PI3K to control endothelial cell migration. Nature 453, 662–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Jia, S. et al. Essential roles of PI3K–p110β in cell growth, metabolism and tumorigenesis. Nature 454, 776–779 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Guillermet-Guibert, J. et al. The p110β isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110γ. Proc. Natl Acad. Sci. USA 105, 8292–8297 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Chaussade, C. et al. Evidence for functional redundancy of class IA PI3K isoforms in insulin signalling. Biochem. J. 404, 449–458 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Papakonstanti, E. A. et al. Distinct roles of class IA PI3K isoforms in primary and immortalised macrophages. J. Cell Sci. 121, 4124–4133 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Vanhaesebroeck, B. et al. Distinct PI3Ks mediate mitogenic signalling and cell migration in macrophages. Nature Cell Biol. 1, 69–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  107. Geering, B., Cutillas, P. R., Nock, G., Gharbi, S. I. & Vanhaesebroeck, B. Class IA phosphoinositide 3-kinases are obligate p85–p110 heterodimers. Proc. Natl Acad. Sci. USA 104, 7809–7814 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Meier, T. I. et al. Cloning, expression, purification, and characterization of the human class Ia phosphoinositide 3-kinase isoforms. Protein Expr. Purif. 35, 218–224 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Beeton, C. A., Chance, E. M., Foukas, L. C. & Shepherd, P. R. Comparison of the kinetic properties of the lipid- and protein-kinase activities of the p110α and p110β catalytic subunits of class-Ia phosphoinositide 3-kinases. Biochem. J. 350, 353–359 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Schmid, M. C. et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kγ, a single convergent point promoting tumor inflammation and progression. Cancer Cell 19, 715–727 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bohnacker, T. et al. PI3Kγ adaptor subunits define coupling to degranulation and cell motility by distinct PtdIns(3,4,5)P3 pools in mast cells. Sci. Signal. 2, ra27 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Voigt, P., Dorner, M. B. & Schaefer, M. Characterization of p87PIKAP, a novel regulatory subunit of phosphoinositide 3-kinase γ that is highly expressed in heart and interacts with PDE3B. J. Biol. Chem. 281, 9977–9986 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Shymanets, A. et al. p87 and p101 subunits are distinct regulators determining class IB phosphoinositide 3-kinase (PI3K) specificity. J. Biol. Chem. 288, 31059–31068 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kurig, B. et al. Ras is an indispensable coregulator of the class IB phosphoinositide 3-kinase p87/p110γ. Proc. Natl Acad. Sci. USA 106, 20312–20317 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Brock, C. et al. Roles of Gβγ in membrane recruitment and activation of p110 γ/p101 phosphoinositide 3-kinase g. J. Cell Biol. 160, 89–99 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Stoyanov, B. et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science 269, 690–693 (1995).

    Article  CAS  PubMed  Google Scholar 

  117. Maier, U., Babich, A. & Nurnberg, B. Roles of non-catalytic subunits in Gβγ-induced activation of class I phosphoinositide 3-kinase isoforms β and γ. J. Biol. Chem. 274, 29311–29317 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Suire, S. et al. p84, a new Gβγ-activated regulatory subunit of the type IB phosphoinositide 3-kinase p110γ. Curr. Biol. 15, 566–570 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Stephens, L. R. et al. The Gβγ sensitivity of a PI3K is dependent upon a tightly associated adaptor, 101. Cell 89, 105–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  120. Vadas, O. et al. Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc. Natl Acad. Sci. USA 110, 18862–18867 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schmid, M. C. et al. PI3-kinase γ promotes Rap1a-mediated activation of myeloid cell integrin α4β1, leading to tumor inflammation and growth. PLoS ONE 8, e60226 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kubo, H., Hazeki, K., Takasuga, S. & Hazeki, O. Specific role for p85/p110β in GTP-binding-protein-mediated activation of Akt. Biochem. J. 392, 607–614 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kurosu, H. et al. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110b is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. J. Biol. Chem. 272, 24252–24256 (1997).

    Article  CAS  PubMed  Google Scholar 

  124. Murga, C., Fukuhara, S. & Gutkind, J. S. A novel role for phosphatidylinositol 3-kinase β in signaling from G protein-coupled receptors to Akt. J. Biol. Chem. 275, 12069–12073 (2000).

    Article  CAS  PubMed  Google Scholar 

  125. Dbouk, H. A. et al. G protein-coupled receptor-mediated activation of p110β by Gβγ is required for cellular transformation and invasiveness. Sci. Signal. 5, ra89 (2012). This study uses hydrogen–deuterium exchange mass spectrometry (HDX-MS) to identify the site on p110β responsible for G βγ binding, which is not conserved among other class IA p110 isoforms.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Saudemont, A. et al. p110γ and p110δ isoforms of phosphoinositide 3-kinase differentially regulate natural killer cell migration in health and disease. Proc. Natl Acad. Sci. USA 106, 5795–5800 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Reif, K. et al. Cutting edge: differential roles for phosphoinositide 3-kinases, 110γ and p110δ, in lymphocyte chemotaxis and homing. J. Immunol. 173, 2236–2240 (2004).

    Article  CAS  PubMed  Google Scholar 

  128. Durand, C. A. et al. Phosphoinositide 3-kinase p110 delta regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses. J. Immunol. 183, 5673–5684 (2009).

    Article  CAS  PubMed  Google Scholar 

  129. Ballou, L. M., Chattopadhyay, M., Li, Y., Scarlata, S. & Lin, R. Z. Gαq binds to p110α/p85α phosphoinositide 3-kinase and displaces Ras. Biochem. J. 394, 557–562 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ballou, L. M., Lin, H. Y., Fan, G., Jiang, Y. P. & Lin, R. Z. Activated Gaq inhibits p110 a phosphatidylinositol 3-kinase and Akt. J. Biol. Chem. 278, 23472–23479 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Yeung, W. W. & Wong, Y. H. Gα16 interacts with Class IA phosphatidylinositol 3-kinases and inhibits Akt signaling. Cell Signal 22, 1379–1387 (2010).

    Article  CAS  PubMed  Google Scholar 

  132. Rodriguez-Viciana, P. et al. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370, 527–532 (1994).

    Article  CAS  PubMed  Google Scholar 

  133. Rodriguez-Viciana, P., Warne, P. H., Vanhaesebroeck, B., Waterfield, M. D. & Downward, J. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15, 2442–2451 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rubio, I., Rodriguez-Viciana, P., Downward, J. & Wetzker, R. Interaction of Ras with phosphoinositide 3-kinase γ. Biochem. J. 326, 891–895 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Pacold, M. E. et al. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinaseγ. Cell 103, 931–943 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Suire, S., Hawkins, P. & Stephens, L. Activation of phosphoinositide 3-kinase γ by Ras. Curr. Biol. 12, 1068–1075 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Zhao, L. & Vogt, P. K. Helical domain and kinase domain mutations in p110α of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc. Natl Acad. Sci. USA 105, 2652–2657 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Denley, A., Kang, S., Karst, U. & Vogt, P. K. Oncogenic signaling of class I PI3K isoforms. Oncogene 27, 2561–2574 (2008).

    Article  CAS  PubMed  Google Scholar 

  139. Gupta, S. et al. Binding of ras to phosphoinositide 3-kinase p110α is required for ras-driven tumorigenesis in mice. Cell 129, 957–968 (2007).

    Article  CAS  PubMed  Google Scholar 

  140. Castellano, E. et al. Requirement for interaction of PI3-kinase p110α with RAS in lung tumor maintenance. Cancer Cell 24, 617–630 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Gritsman, K. et al. Hematopoiesis and RAS-driven myeloid leukemia differentially require PI3K isoform p110α. J. Clin. Invest. 124, 1794–1809 (2014). References 140 and 141 use GEMMs to show the specific importance of p110α in the development and maintenance of RAS-driven cancers.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Suire, S. et al. Gβγs and the Ras binding domain of p110γ are both important regulators of PI3Kγ signalling in neutrophils. Nature Cell Biol. 8, 1303–1309 (2006).

    Article  CAS  PubMed  Google Scholar 

  143. Fritsch, R. et al. RAS and RHO families of GTPases directly regulate distinct phosphoinositide 3-kinase isoforms. Cell 153, 1050–1063 (2013). This extensive biochemical study identifies RHO but not RAS small GTPases as directly binding and activating p110β through its RBD.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Vanhaesebroeck, B. et al. P110δ, a novel phosphoinositide 3-kinase in leukocytes. Proc. Natl Acad. Sci. USA 94, 4330–4335 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Murphy, G. A. et al. Involvement of phosphatidylinositol 3-kinase, but not RalGDS, in TC21/R-Ras2-mediated transformation. J. Biol. Chem. 277, 9966–9975 (2002).

    Article  CAS  PubMed  Google Scholar 

  146. Rodriguez-Viciana, P., Sabatier, C. & McCormick, F. Signaling specificity by Ras family GTPases is determined by the full spectrum of effectors they regulate. Mol. Cell. Biol. 24, 4943–4954 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Delgado, P. et al. Essential function for the GTPase TC21 in homeostatic antigen receptor signaling. Nature Immunol. 10, 880–888 (2009).

    Article  CAS  Google Scholar 

  148. Klarlund, J. K. et al. Signaling by phosphoinositide-3,4,5-trisphosphate through proteins containing pleckstrin and Sec7 homology domains. Science 275, 1927–1930 (1997).

    Article  CAS  PubMed  Google Scholar 

  149. Welch, H. C. et al. P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-regulated guanine-nucleotide exchange factor for Rac. Cell 108, 809–821 (2002).

    Article  CAS  PubMed  Google Scholar 

  150. Krugmann, S. et al. Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell 9, 95–108 (2002).

    Article  CAS  PubMed  Google Scholar 

  151. Liaw, D. et al. Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nature Genet. 16, 64–67 (1997).

    Article  CAS  PubMed  Google Scholar 

  152. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998).

    Article  CAS  PubMed  Google Scholar 

  153. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  PubMed  Google Scholar 

  154. Kwabi-Addo, B. et al. Haploinsufficiency of the Pten tumor suppressor gene promotes prostate cancer progression. Proc. Natl Acad. Sci. USA 98, 11563–11568 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wang, S. et al. Prostate-specific deletion of the murine Pten tumor suppressor gene leads to metastatic prostate cancer. Cancer Cell 4, 209–221 (2003).

    Article  CAS  PubMed  Google Scholar 

  156. Alimonti, A. et al. Subtle variations in Pten dose determine cancer susceptibility. Nature Genet. 42, 454–458 (2010).

    Article  CAS  PubMed  Google Scholar 

  157. Ni, J. et al. Functional characterization of an isoform-selective inhibitor of PI3K–p110β as a potential anticancer agent. Cancer Discov. 2, 425–433 (2012). This study identifies a novel p110β-selective inhibitor and shows its effectiveness against PTEN-deficient tumours in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Torbett, N. E. et al. A chemical screen in diverse breast cancer cell lines reveals genetic enhancers and suppressors of sensitivity to PI3K isoform-selective inhibition. Biochem. J. 415, 97–110 (2008).

    Article  CAS  PubMed  Google Scholar 

  159. Wee, S. et al. PTEN-deficient cancers depend on PIK3CB. Proc. Natl Acad. Sci. USA 105, 13057–13062 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Jia, S. et al. Opposing effects of androgen deprivation and targeted therapy on prostate cancer prevention. Cancer Discov. 3, 44–51 (2013).

    Article  CAS  PubMed  Google Scholar 

  161. Berenjeno, I. M. et al. Both p110α and p110β isoforms of PI3K can modulate the impact of loss-of-function of the PTEN tumour suppressor. Biochem. J. 442, 151–159 (2012).

    Article  CAS  PubMed  Google Scholar 

  162. Schmit, F. et al. PI3K isoform dependence of PTEN-deficient tumors can be altered by the genetic context. Proc. Natl Acad. Sci. USA 111, 6395–6400 (2014). This study uses GEMMs to show that concomitant expression of oncogenic RAS can shift the isoform reliance of PTEN-deficient tumours from p110β to p110α.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wang, Q., Weisberg, E. & Zhao, J. J. The gene dosage of class Ia PI3K dictates the development of PTEN hamartoma tumor syndrome. Cell Cycle 12, 3589–3593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wang, Q. et al. Spatially distinct roles of class Ia PI3K isoforms in the development and maintenance of PTEN hamartoma tumor syndrome. Genes Dev. 27, 1568–1580 (2013). This study identifies specific roles for both p110α and p110β in epidermal compartments of a GEMM of PHTS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Subramaniam, P. S. et al. Targeting nonclassical oncogenes for therapy in T-ALL. Cancer Cell 21, 459–472 (2012). This study uses GEMMs to show that both p110δ and p110γ contribute to T-ALL that is driven by PTEN loss.

    Article  CAS  PubMed  Google Scholar 

  166. Weigelt, B., Warne, P. H., Lambros, M. B., Reis-Filho, J. S. & Downward, J. PI3K pathway dependencies in endometrioid endometrial cancer cell lines. Clin. Cancer Res. 19, 3533–3544 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Rodon, J., Dienstmann, R., Serra, V. & Tabernero, J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nature Rev. Clin. Oncol. 10, 143–153 (2013).

    Article  CAS  Google Scholar 

  168. Raynaud, F. I. et al. Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941. Mol. Cancer Ther. 8, 1725–1738 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Maira, S. M. et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther. 7, 1851–1863 (2008).

    Article  CAS  PubMed  Google Scholar 

  170. Fruman, D. A. & Rommel, C. PI3K and cancer: lessons, challenges and opportunities. Nature Rev. Drug Discov. 13, 140–156 (2014).

    Article  CAS  Google Scholar 

  171. Furman, R. R. et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 370, 997–1007 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Gopal, A. K. et al. PI3Kδ inhibition by idelalisib in patients with relapsed indolent lymphoma. N. Engl. J. Med. 370, 1008–1018 (2014). References 171 and 172 report dramatic success in the treatment of patients with B cell malignancies with the p110δ-selective inhibitor idelalisib.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fruman, D. A. & Cantley, L. C. Idelalisib — a PI3Kδ inhibitor for B-cell cancers. N. Engl. J. Med. 370, 1061–1062 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Vanhaesebroeck, B. & Khwaja, A. PI3Kδ inhibition hits a sensitive spot in B cell malignancies. Cancer Cell 25, 269–271 (2014).

    Article  CAS  PubMed  Google Scholar 

  175. Ali, K. et al. Inactivation of PI3K p110δ breaks regulatory T-cell-mediated immune tolerance to cancer. Nature (2014). This paper shows that p110δ inactivation inhibits the growth of certain solid tumours by blocking regulatory T cell-mediated immune suppression in mice.

  176. Juric, D. et al. Abstract PD1-3: Ph1b study of the PI3K inhibitor GDC-0032 in combination with fulvestrant in patients with hormone receptor-positive advanced breast cancer. Cancer Res. 73, D1–D3 (2013).

    Google Scholar 

  177. Busaidy, N. L. et al. Management of metabolic effects associated with anticancer agents targeting the PI3K–Akt–mTOR pathway. J. Clin. Oncol. 30, 2919–2928 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Bollag, G. et al. Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467, 596–599 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sampath, D. et al. Abstract P4-15-02: The PI3K inhibitor GDC-0032 enhances the efficacy of standard of care therapeutics in PI3Kα mutant breast cancer models. Cancer Res. 73, 4-15-02 (2013).

    Google Scholar 

  181. O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Britschgi, A. et al. JAK2/STAT5 inhibition circumvents resistance to PI3K/mTOR blockade: a rationale for cotargeting these pathways in metastatic breast cancer. Cancer Cell 22, 796–811 (2012).

    Article  CAS  PubMed  Google Scholar 

  183. Muranen, T. et al. Inhibition of PI3K/mTOR leads to adaptive resistance in matrix-attached cancer cells. Cancer Cell 21, 227–239 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Elkabets, M. et al. mTORC1 inhibition is required for sensitivity to PI3K p110α inhibitors in PIK3CA-mutant breast cancer. Sci. Transl. Med. 5, 196ra99 (2013). This paper identifies mTOR pathway activation as a mechanism of resistance to p110α-selective therapy that can be overcome by mTORC1 inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Chandarlapaty, S. et al. AKT inhibition relieves feedback suppression of receptor tyrosine kinase expression and activity. Cancer Cell 19, 58–71 (2011). This paper shows that PI3K–AKT-pathway inhibition induces a feedback loop leading to overexpression and activation of multiple RTKs that can be overcome by combined PI3K and RTK inhibition.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Sergina, N. V. et al. Escape from HER-family tyrosine kinase inhibitor therapy by the kinase-inactive HER3. Nature 445, 437–441 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Garrett, J. T. et al. Transcriptional and posttranslational up-regulation of HER3 (ErbB3) compensates for inhibition of the HER2 tyrosine kinase. Proc. Natl Acad. Sci. USA 108, 5021–5026 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  188. Garrett, J. T. et al. Combination of antibody that inhibits ligand-independent HER3 dimerization and a p110α inhibitor potently blocks PI3K signaling and growth of HER2+ breast cancers. Cancer Res. 73, 6013–6023 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tao, J. J. et al. Antagonism of EGFR and HER3 enhances the response to inhibitors of the PI3K-Akt pathway in triple-negative breast cancer. Sci. Signal. 7, ra29 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Serra, V. et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 30, 2547–2557 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Will, M. et al. Rapid induction of apoptosis by PI3K inhibitors is dependent upon their transient inhibition of RAS–ERK signaling. Cancer Discov. 4, 334–347 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ilic, N., Utermark, T., Widlund, H. R. & Roberts, T. M. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc. Natl Acad. Sci. USA 108, E699–E708 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Muellner, M. K. et al. A chemical-genetic screen reveals a mechanism of resistance to PI3K inhibitors in cancer. Nature Chem. Biol. 7, 787–793 (2011).

    Article  CAS  Google Scholar 

  194. Tenbaum, S. P. et al. β-catenin confers resistance to PI3K and AKT inhibitors and subverts FOXO3a to promote metastasis in colon cancer. Nature Med. 18, 892–901 (2012). In this study, WNT–β-catenin pathway hyperactivation is shown to be a potential mechanism contributing to resistance to PI3K pathway inhibition and metastasis in colon cancer.

    Article  CAS  PubMed  Google Scholar 

  195. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Huang, S. M. et al. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461, 614–620 (2009).

    Article  CAS  PubMed  Google Scholar 

  197. Juric, D. et al. Phase I study of BYL719, an α-specific PI3K inhibitor, in patients with PIK3CA mutant advanced solid tumors: preliminary efficacy and safety in patients with PIK3CA mutant ER-positive (ER+) metastatic breast cancer (MBC). Cancer Res. 72, P6-10-07 (2012).

    Google Scholar 

  198. Juric, D. et al. Preliminary safety, pharmacokinetics and anti-tumor activity of BYL719, an α-specific PI3K inhibitor in combination with fulvestrant: results from a phase I study. Cancer Res. 73, 2-16-14 (2013).

    Google Scholar 

  199. Gruber Filbin, M. et al. Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities. Nature Med. 19, 1518–1523 (2013).

    Article  CAS  Google Scholar 

  200. Juvekar, A. et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2, 1048–1063 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Ibrahim, Y. H. et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2, 1036–1047 (2012). References 200 and 201 show that PI3K inhibition leads to the downregulation of BRCA1 and BRCA2 and subsequent sensitization of tumour cells to PARP inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Gonzalez-Billalabeitia, E. et al. Vulnerabilities of PTEN-p53-deficient prostate cancers to compound PARP/PI3K inhibition. Cancer Discov. 8, 896–904 (2014).

    Article  CAS  Google Scholar 

  203. Rahmani, M. et al. Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. Cancer Res. 73, 1340–1351 (2013).

    Article  CAS  PubMed  Google Scholar 

  204. Vora, S. R. et al. CDK 4/6 inhibitors sensitize PIK3CA mutant breast cancer to PI3K inhibitors. Cancer Cell 26, 136–149 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank T. M. Roberts for critical reading of the manuscript, T. M. Roberts and L. C. Cantley for discussions, and N. Rosen and J. A. Engelman for sharing unpublished observations. They also thank the reviewers for their suggestions and apologize to the many colleagues whose work they were unable cite owing to space limitations. Research in the laboratory of J.J.Z. is supported by the US National Institutes of Health (NIH) grants CA172461-01, P50 CA168504-01A1, P50 CA165962-01A1 and the Stand Up to Cancer Dream Team Translational Research grant SU2C-AACR-DT0209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean J. Zhao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

Clinicaltrials.gov

PowerPoint slides

Supplementary information

Supplementary information S1

Class I PI3K isoform alterations in cancer (PDF 357 kb)

Supplementary information S2

Genetically engineered mouse models of PI3K isoforms in cancer (PDF 286 kb)

Supplementary information S3

Combination of PI3K inhibitors with other targeted therapies in the clinic (PDF 399 kb)

Glossary

Myristoylated

Refers to an irreversible co-translational modification of proteins, in which a myristoyl group is covalently attached to an amino acid at the amino terminal of a nascent polypeptide, promoting membrane localization of the modified protein.

Congenital mosaic overgrowth syndromes

A clinically heterogeneous group of genetic disorders characterized by abnormal progressive localized growth. They are caused by diverse somatic mutations and are associated with increased cancer risk.

Inter-SRC homology 2 domain

(iSH2 domain). The domain of p85 regulatory phosphatidylinositol 3-kinase (PI3K) isoforms that is located between the carboxy- and amino-terminal SH2 domains and that directly interacts with class IA p110 catalytic isoforms.

Megalencephaly syndromes

A collection of sporadic overgrowth disorders characterized by enlarged brain size and other distinct features.

SH2 domains

Structurally conserved protein–protein interaction domains that facilitate interactions with phosphorylated tyrosine residues on other proteins.

RAS superfamily proteins

Small monomeric membrane-associated GTPases, which are divided into the RAS, RHO, RAB, ARF and RAN subfamilies based on structure and function.

RAS GTPases

A subfamily of RAS superfamily GTPases that have crucial roles in signal transduction.In mammals, the three major RAS subfamily members are HRAS, KRAS and NRAS.

RHO family GTPases

A subfamily of RAS superfamily proteins that share similar roles in signal transduction to RAS GTPases and are best characterized for their roles in the regulation of cell shape, movement and polarity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorpe, L., Yuzugullu, H. & Zhao, J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 15, 7–24 (2015). https://doi.org/10.1038/nrc3860

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3860

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer