Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Haematological malignancies: at the forefront of immunotherapeutic innovation

Key Points

  • The impressive potency of novel cancer immunotherapies has refocused attention on this class of agents for both solid and haematological cancers, and the robust experience of immunotherapeutic efforts specifically within haematological malignancies offers insights germane to the development of these strategies.

  • From adoptive cellular therapy and antibody-based therapies to active cancer vaccination, early investigations in the blood malignancies provided both initial proofs of principles and informative testing grounds for agents such as allogeneic haematopoietic stem cell transplantation (allo-HSCT), donor lymphocyte infusion (DLI) and rituximab.

  • Unique features of haematological malignancies that enable the development of immunotherapies include their well-known immune responsiveness, ease of tissue sampling to distinguish malignant from normal cells by surface marker expression, the ability to directly examine immune-based antitumour responses after allo-HSCT and DLI, and their shared sites of origin with normal immune counterparts.

  • Lymphoid and myeloid malignant cells subvert physiological immune programmes both to directly drive cancer growth and to indirectly recruit an inflammatory, immune-supportive infiltrate.

  • Clinical and laboratory investigations in haematological malignancies have suggested four major nodes of potential vulnerability in the cancer–immune relationship: direct targeting of surface tumour antigens; boosting immune effector number and function; activating tumour antigen-specific immunity; and overcoming inhibitory immune suppression.

  • An appreciation of the coordination among distinct cells during an effective immune response suggests a multi-pronged combinatorial strategy for inducing potent antitumour immunity; indeed, recent clinical evidence from trials in haematological malignancies supports this paradigm. Moreover, it is becoming increasingly evident that evaluation of both leukaemic and infiltrating immune cells at the site of disease is important to identify biomarkers of immunotherapeutic response and resistance, which in turn enable selection of appropriate treatment options.

Abstract

The recent successes of cancer immunotherapies have stimulated interest in the potential widespread application of these approaches; haematological malignancies have provided both initial proofs of concept and an informative testing ground for various immune-based therapeutics. The immune-cell origin of many of the blood malignancies provides a unique opportunity both to understand the mechanisms of cancer immune responsiveness and immune evasion, and to exploit these mechanisms for therapeutic purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategies of co-opting physiological immune programmes.
Figure 2: Timeline of major immunotherapeutic advances in haematological malignancies.

Similar content being viewed by others

References

  1. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nature Rev. Cancer 12, 252–264 (2012). This paper is a good review of immune checkpoints, particularly CTLA4 and PD1, in cancer immunotherapy.

    Article  CAS  Google Scholar 

  2. Gattiker, H. H., Wiltshaw, E. & Galton, D. A. Spontaneous regression in non-Hodgkin's lymphoma. Cancer 45, 2627–2632 (1980).

    Article  CAS  PubMed  Google Scholar 

  3. Del Giudice, I. et al. Spontaneous regression of chronic lymphocytic leukemia: clinical and biologic features of 9 cases. Blood 114, 638–646 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Nadler, L. M. et al. A unique cell surface antigen identifying lymphoid malignancies of B cell origin. J. Clin. Invest. 67, 134–140 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Feuerer, M. et al. Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nature Med. 9, 1151–1157 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Cardoso, A. A. et al. Pre-B acute lymphoblastic leukemia cells may induce T-cell anergy to alloantigen. Blood 88, 41–48 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Costello, R. T. et al. Regulation of CD80/B7-1 and CD86/B7-2 molecule expression in human primary acute myeloid leukemia and their role in allogenic immune recognition. Eur. J. Immunol. 28, 90–103 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Brouwer, R. E. et al. Expression and induction of costimulatory and adhesion molecules on acute myeloid leukemic cells: implications for adoptive immunotherapy. Exp. Hematol. 28, 161–168 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Riemersma, S. A. et al. Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas arising in immune-privileged sites. Blood 96, 3569–3577 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Steidl, C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377–381 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zitvogel, L., Galluzzi, L., Smyth, M. J. & Kroemer, G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39, 74–88 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Apetoh, L. et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nature Med. 13, 1050–1059 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Burger, J. A. et al. Blood-derived nurse-like cells protect chronic lymphocytic leukemia B cells from spontaneous apoptosis through stromal cell-derived factor-1. Blood 96, 2655–2663 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Jia, L. et al. Extracellular HMGB1 promotes differentiation of nurse-like cells in chronic lymphocytic leukemia. Blood 123, 1709–1719 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fridman, W. H., Pages, F., Sautes-Fridman, C. & Galon, J. The immune contexture in human tumours: impact on clinical outcome. Nature Rev. Cancer 12, 298–306 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Burger, J. A. et al. High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 113, 3050–3058 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sivina, M. et al. CCL3 (MIP-1α) plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood 117, 1662–1669 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bagnara, D. et al. A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease. Blood 117, 5463–5472 (2011). This study is an in vivo demonstration of the requirement of T cells for the growth of CLL.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Greaves, P. et al. Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells. Blood 122, 2856–2863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hussell, T., Isaacson, P. G., Crabtree, J. E. & Spencer, J. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet 342, 571–574 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Umetsu, D. T., Esserman, L., Donlon, T. A., DeKruyff, R. H. & Levy, R. Induction of proliferation of human follicular (B type) lymphoma cells by cognate interaction with CD4+ T cell clones. J. Immunol. 144, 2550–2557 (1990).

    CAS  PubMed  Google Scholar 

  22. Kiaii, S. et al. Follicular lymphoma cells induce changes in T-cell gene expression and function: potential impact on survival and risk of transformation. J. Clin. Oncol. 31, 2654–2661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guilloton, F. et al. Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes. Blood 119, 2556–2567 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Vega, F. et al. The stromal composition of malignant lymphoid aggregates in bone marrow: variations in architecture and phenotype in different B-cell tumours. Br. J. Haematol. 117, 569–576 (2002).

    Article  PubMed  Google Scholar 

  25. Scott, D. W. & Gascoyne, R. D. The tumour microenvironment in B cell lymphomas. Nature Rev. Cancer 14, 517–534 (2014).

    Article  CAS  Google Scholar 

  26. Palumbo, A. & Anderson, K. Multiple myeloma. N. Engl. J. Med. 364, 1046–1060 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Kim, J. et al. Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells. Br. J. Haematol. 158, 336–346 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kawano, M. et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 332, 83–85 (1988).

    Article  CAS  PubMed  Google Scholar 

  29. Bahlis, N. J. et al. CD28-mediated regulation of multiple myeloma cell proliferation and survival. Blood 109, 5002–5010 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Murray, M. E. et al. CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma. Blood 123, 3770–3779 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Noonan, K. et al. A novel role of IL-17-producing lymphocytes in mediating lytic bone disease in multiple myeloma. Blood 116, 3554–3563 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Prabhala, R. H. et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma. Blood 115, 5385–5392 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Curiel, T. J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Med. 10, 942–949 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Bates, G. J. et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 24, 5373–5380 (2006).

    Article  PubMed  Google Scholar 

  35. Lee, A. M. et al. Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. J. Clin. Oncol. 24, 5052–5059 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Carreras, J. et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108, 2957–2964 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Kelley, T. W. & Parker, C. J. CD4+CD25+Foxp3+ regulatory T cells and hematologic malignancies. Front. Biosci. (Schol. Ed.) 2, 980–992 (2010).

    Article  Google Scholar 

  38. Greaves, P. et al. Expression of FOXP3, CD68, and CD20 at diagnosis in the microenvironment of classical Hodgkin lymphoma is predictive of outcome. J. Clin. Oncol. 31, 256–262 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Carreras, J. et al. High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J. Clin. Oncol. 27, 1470–1476 (2009). References 38 and 39 illustrate the unusual positive prognostic benefit of immune-inhibitory elements in the lymphoma microenvironment.

    Article  PubMed  Google Scholar 

  40. Coiffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 235–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Cheson, B. D. & Leonard, J. P. Monoclonal antibody therapy for B-cell non-Hodgkin's lymphoma. N. Engl. J. Med. 359, 613–626 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Sliwkowski, M. X. & Mellman, I. Antibody therapeutics in cancer. Science 341, 1192–1198 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Riechmann, L., Clark, M., Waldmann, H. & Winter, G. Reshaping human antibodies for therapy. Nature 332, 323–327 (1988).

    Article  CAS  PubMed  Google Scholar 

  45. Clynes, R. A., Towers, T. L., Presta, L. G. & Ravetch, J. V. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nature Med. 6, 443–446 (2000). This study demonstrates the importance of Fc-receptor-dependent mechanisms in the antitumour efficacy of mAbs.

    Article  CAS  PubMed  Google Scholar 

  46. Park, S. et al. The therapeutic effect of anti-HER2/neu antibody depends on both innate and adaptive immunity. Cancer Cell 18, 160–170 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Weng, W. K. & Levy, R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J. Clin. Oncol. 21, 3940–3947 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Beers, S. A., Chan, C. H., French, R. R., Cragg, M. S. & Glennie, M. J. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin. Hematol. 47, 107–114 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Wierda, W. G. et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J. Clin. Oncol. 28, 1749–1755 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Reagan, J. L. & Castillo, J. J. Ofatumumab for newly diagnosed and relapsed/refractory chronic lymphocytic leukemia. Expert Rev. Anticancer Ther. 11, 151–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Goede, V. et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N. Engl. J. Med. 370, 1101–1110 (2014).

    Article  CAS  PubMed  Google Scholar 

  52. Golay, J., Manganini, M., Rambaldi, A. & Introna, M. Effect of alemtuzumab on neoplastic B cells. Haematologica 89, 1476–1483 (2004).

    CAS  PubMed  Google Scholar 

  53. Pro, B. et al. Brentuximab vedotin (SGN-35) in patients with relapsed or refractory systemic anaplastic large-cell lymphoma: results of a phase II study. J. Clin. Oncol. 30, 2190–2196 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Younes, A. et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin's lymphoma. J. Clin. Oncol. 30, 2183–2189 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tai, Y. T. et al. Anti-CS1 humanized monoclonal antibody HuLuc63 inhibits myeloma cell adhesion and induces antibody-dependent cellular cytotoxicity in the bone marrow milieu. Blood 112, 1329–1337 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zonder, J. A. et al. A phase 1, multicenter, open-label, dose escalation study of elotuzumab in patients with advanced multiple myeloma. Blood 120, 552–559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lonial, S. et al. Elotuzumab in combination with lenalidomide and low-dose dexamethasone in relapsed or refractory multiple myeloma. J. Clin. Oncol. 30, 1953–1959 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Ocio, E. M. et al. New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the International Myeloma Working Group (IMWG). Leukemia 28, 525–542 (2014).

    Article  CAS  PubMed  Google Scholar 

  59. Lokhorst, H. M. et al. Phase I/II dose-escalation study of daratumumab in patients with relapsed or refractory multiple myeloma. J Clin. Oncol. 31 (Suppl.), 8512 (2013).

    Article  Google Scholar 

  60. Hoffman, L. M. & Gore, L. Blinatumomab, a bi-specific anti-CD19/CD3 BiTE® antibody for the treatment of acute lymphoblastic leukemia: perspectives and current pediatric applications. Front. Oncol. 4, 63 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Topp, M. S. et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 120, 5185–5187 (2012). This study documents the long-term efficacy of a novel mechanism of immunotherapeutic action in a traditionally treatment-refractory disease.

    Article  CAS  PubMed  Google Scholar 

  62. Topp, M. S. et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 16, 57–66 (2014).

    Article  PubMed  CAS  Google Scholar 

  63. Topp, M. S. et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J. Clin. Oncol. 32, 4134–4140 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Viardot, A. et al. Treatment of relapsed/refractory diffuse large B-cell lymphoma with the bispecific T-cell engager (BiTE) antibody construct blinatumomab: primary analysis results from an open-label, phase 2 study. ASH Annu. Meet. Abstr. 124, 4460 (2014).

    Google Scholar 

  65. Laszlo, G. S. et al. Cellular determinants for preclinical activity of a novel CD33/CD3 bispecific T-cell engager (BiTE) antibody, AMG 330, against human AML. Blood 123, 554–561 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Williams, K. M., Hakim, F. T. & Gress, R. E. T cell immune reconstitution following lymphodepletion. Semin. Immunol. 19, 318–330 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hakim, F. T. et al. Constraints on CD4 recovery postchemotherapy in adults: thymic insufficiency and apoptotic decline of expanded peripheral CD4 cells. Blood 90, 3789–3798 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Maus, M. V., Grupp, S. A., Porter, D. L. & June, C. H. Antibody modified T cells: CARs take the front seat for hematologic malignancies. Blood 17, 2625–2635 (2014).

    Article  CAS  Google Scholar 

  69. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kalos, M. et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 3, 95ra73 (2011). References 69 and 70 demonstrate that second-generation CAR T cells can mediate sustained tumour regression, undergo massive expansion in vivo and persist for extended periods of time, establishing memory T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kochenderfer, J. N. et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33, 540–549 (2015).

    Article  CAS  PubMed  Google Scholar 

  72. Maude, S. L. et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371, 1507–1517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Davila, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014). References 72 and 73 highlight the pronounced sensitivity of relapsed or refractory ALL to CAR T cells using different second-generation CAR designs and demonstrate the durability of remissions with use of the CD137 co-stimulatory domain.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Locatelli, F., Merli, P. & Rutella, S. At the bedside: innate immunity as an immunotherapy tool for hematological malignancies. J. Leukoc. Biol. 94, 1141–1157 (2013).

    Article  PubMed  CAS  Google Scholar 

  76. Ruggeri, L. et al. Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295, 2097–2100 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Venstrom, J. M. et al. HLA-C-dependent prevention of leukemia relapse by donor activating KIR2DS1. N. Engl. J. Med. 367, 805–816 (2012). References 76 and 77 illustrate the clinical relevance of NK cell alloreactivity by showing that donor NK cell alloreactivity towards patient target cells could explain long-term survival in patients with AML after allo-HSCT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Cooley, S. et al. Donor selection for natural killer cell receptor genes leads to superior survival after unrelated transplantation for acute myelogenous leukemia. Blood 116, 2411–2419 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hsu, K. C. et al. Improved outcome in HLA-identical sibling hematopoietic stem cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 105, 4878–4884 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Oevermann, L. et al. KIR B haplotype donors confer a reduced risk for relapse after haploidentical transplantation in children with ALL. Blood 124, 2744–2747 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Torelli, G. F. et al. Recognition of adult and pediatric acute lymphoblastic leukemia blasts by natural killer cells. Haematologica 99, 1248–1254 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Miller, J. S. et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer. Blood 105, 3051–3057 (2005).

    Article  CAS  PubMed  Google Scholar 

  83. Rubnitz, J. E. et al. NKAML: a pilot study to determine the safety and feasibility of haploidentical natural killer cell transplantation in childhood acute myeloid leukemia. J. Clin. Oncol. 28, 955–959 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Suntharalingam, G. et al. Cytokine storm in a Phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N. Engl. J. Med. 355, 1018–1028 (2006).

    Article  CAS  PubMed  Google Scholar 

  85. Croft, M., Benedict, C. A. & Ware, C. F. Clinical targeting of the TNF and TNFR superfamilies. Nature Rev. Drug Discov. 12, 147–168 (2013).

    Article  CAS  Google Scholar 

  86. Yao, S., Zhu, Y. & Chen, L. Advances in targeting cell surface signalling molecules for immune modulation. Nature Rev. Drug Discov. 12, 130–146 (2013).

    Article  CAS  Google Scholar 

  87. French, R. R., Chan, H. T., Tutt, A. L. & Glennie, M. J. CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nature Med. 5, 548–553 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Sotomayor, E. M. et al. Conversion of tumor-specific CD4+ T-cell tolerance to T-cell priming through in vivo ligation of CD40. Nature Med. 5, 780–787 (1999).

    Article  CAS  PubMed  Google Scholar 

  89. Advani, R. et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin's lymphoma. J. Clin. Oncol. 27, 4371–4377 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Beatty, G. L. et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kohrt, H. E. et al. CD137 stimulation enhances the antilymphoma activity of anti-CD20 antibodies. Blood 117, 2423–2432 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Coffman, R. L., Sher, A. & Seder, R. A. Vaccine adjuvants: putting innate immunity to work. Immunity 33, 492–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rezvani, K. Posttransplantation vaccination: concepts today and on the horizon. Hematology Am. Soc. Hematol. Educ. Program 11, 299–304 (2011).

    Article  Google Scholar 

  94. Inoue, K. et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 89, 1405–1412 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Miwa, H., Beran, M. & Saunders, G. F. Expression of the Wilms' tumor gene (WT1) in human leukemias. Leukemia 6, 405–409 (1992).

    CAS  PubMed  Google Scholar 

  96. Molldrem, J. J. et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J. Clin. Invest. 111, 639–647 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Greiner, J. et al. Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp. Hematol. 30, 1029–1035 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Giannopoulos, K. et al. Expression of RHAMM/CD168 and other tumor-associated antigens in patients with B-cell chronic lymphocytic leukemia. Int. J. Oncol. 29, 95–103 (2006).

    CAS  PubMed  Google Scholar 

  99. Molldrem, J. J. et al. Evidence that specific T lymphocytes may participate in the elimination of chronic myelogenous leukemia. Nature Med. 6, 1018–1023 (2000).

    Article  CAS  PubMed  Google Scholar 

  100. Rezvani, K. et al. Graft-versus-leukemia effects associated with detectable Wilms tumor-1 specific T lymphocytes after allogeneic stem cell transplantation for acute lymphoblastic leukemia. Blood 110, 1924–1932 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Greiner, J. et al. Expression of tumor-associated antigens in acute myeloid leukemia: implications for specific immunotherapeutic approaches. Blood 108, 4109–4117 (2006).

    Article  CAS  PubMed  Google Scholar 

  102. Gao, L. et al. Selective elimination of leukemic CD34+ progenitor cells by cytotoxic T lymphocytes specific for WT1. Blood 95, 2198–2203 (2000).

    Article  CAS  PubMed  Google Scholar 

  103. Molldrem, J. et al. Targeted T-cell therapy for human leukemia: cytotoxic T lymphocytes specific for a peptide derived from proteinase 3 preferentially lyse human myeloid leukemia cells. Blood 88, 2450–2457 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Keilholz, U. et al. A clinical and immunologic phase 2 trial of Wilms tumor gene product 1 (WT1) peptide vaccination in patients with AML and MDS. Blood 113, 6541–6548 (2009).

    Article  CAS  PubMed  Google Scholar 

  105. Oka, Y. et al. Induction of WT1 (Wilms' tumor gene)-specific cytotoxic T lymphocytes by WT1 peptide vaccine and the resultant cancer regression. Proc. Natl Acad. Sci. USA 101, 13885–13890 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schmitt, M. et al. RHAMM-R3 peptide vaccination in patients with acute myeloid leukemia, myelodysplastic syndrome, and multiple myeloma elicits immunologic and clinical responses. Blood 111, 1357–1365 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Giannopoulos, K. et al. Peptide vaccination elicits leukemia-associated antigen-specific cytotoxic CD8+ T-cell responses in patients with chronic lymphocytic leukemia. Leukemia 24, 798–805 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Qazilbash, M. H. et al. PR1 peptide vaccine-induced immune response is associated with better event-free survival in patients with myeloid leukemia. ASH Annu. Meet. Abstr. 110, 283 (2007).

    Google Scholar 

  109. Oka, Y. et al. Wilms tumor gene peptide-based immunotherapy for patients with overt leukemia from myelodysplastic syndrome (MDS) or MDS with myelofibrosis. Int. J. Hematol. 78, 56–61 (2003).

    Article  CAS  PubMed  Google Scholar 

  110. Rezvani, K. et al. Leukemia-associated antigen-specific T-cell responses following combined PR1 and WT1 peptide vaccination in patients with myeloid malignancies. Blood 111, 236–242 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Uttenthal, B. et al. Wilms' Tumour 1 (WT1) peptide vaccination in patients with acute myeloid leukaemia induces short-lived WT1-specific immune responses. Br. J. Haematol. 164, 366–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  112. Rezvani, K. et al. Repeated PR1 and WT1 peptide vaccination in Montanide-adjuvant fails to induce sustained high-avidity, epitope-specific CD8+ T cells in myeloid malignancies. Haematologica 96, 432–440 (2011). This study shows that repeated delivery of peptides in Montanide-adjuvant and GM-CSF leads to rapid loss of high-avidity peptide-specific CD8+ T cells and calls for the re-evaluation of peptide vaccination strategies.

    Article  CAS  PubMed  Google Scholar 

  113. Kuball, J. et al. Pitfalls of vaccinations with WT1-, Proteinase3- and MUC1-derived peptides in combination with MontanideISA51 and CpG7909. Cancer Immunol. Immunother. 60, 161–171 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Maslak, P. G. et al. Vaccination with synthetic analog peptides derived from WT1 oncoprotein induces T-cell responses in patients with complete remission from acute myeloid leukemia. Blood 116, 171–179 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Figdor, C. G., de Vries, I. J., Lesterhuis, W. J. & Melief, C. J. Dendritic cell immunotherapy: mapping the way. Nature Med. 10, 475–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Kitawaki, T. et al. A phase I/IIa clinical trial of immunotherapy for elderly patients with acute myeloid leukaemia using dendritic cells co-pulsed with WT1 peptide and zoledronate. Br. J. Haematol. 153, 796–799 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Van Tendeloo, V. F. et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms' tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl Acad. Sci. USA 107, 13824–13829 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cathcart, K. et al. A multivalent BCR–ABL fusion peptide vaccination trial in patients with chronic myeloid leukemia. Blood 103, 1037–1042 (2004).

    Article  CAS  PubMed  Google Scholar 

  119. Bocchia, M. et al. Effect of a p210 multipeptide vaccine associated with imatinib or interferon in patients with chronic myeloid leukaemia and persistent residual disease: a multicentre observational trial. Lancet 365, 657–662 (2005).

    Article  CAS  PubMed  Google Scholar 

  120. Rojas, J. M., Knight, K., Wang, L. & Clark, R. E. Clinical evaluation of BCR–ABL peptide immunisation in chronic myeloid leukaemia: results of the EPIC study. Leukemia 21, 2287–2295 (2007).

    Article  CAS  PubMed  Google Scholar 

  121. Jain, N. et al. Synthetic tumor-specific breakpoint peptide vaccine in patients with chronic myeloid leukemia and minimal residual disease: a phase 2 trial. Cancer 115, 3924–3934 (2009).

    Article  PubMed  CAS  Google Scholar 

  122. Rojas, J. M. et al. BCR–ABL peptide vaccination in healthy subjects: immunological responses are equivalent to those in chronic myeloid leukaemia patients. Leukemia Res. 35, 369–372 (2011).

    Article  CAS  Google Scholar 

  123. Miller, R. A., Maloney, D. G., Warnke, R. & Levy, R. Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N. Engl. J. Med. 306, 517–522 (1982).

    Article  CAS  PubMed  Google Scholar 

  124. Bendandi, M. et al. Complete molecular remissions induced by patient-specific vaccination plus granulocyte–monocyte colony-stimulating factor against lymphoma. Nature Med. 5, 1171–1177 (1999).

    Article  CAS  PubMed  Google Scholar 

  125. Inoges, S. et al. Clinical benefit associated with idiotypic vaccination in patients with follicular lymphoma. J. Natl Cancer Inst. 98, 1292–1301 (2006).

    Article  PubMed  Google Scholar 

  126. Redfern, C. H. et al. Phase II trial of idiotype vaccination in previously treated patients with indolent non-Hodgkin's lymphoma resulting in durable clinical responses. J. Clin. Oncol. 24, 3107–3112 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Ai, W. Z., Tibshirani, R., Taidi, B., Czerwinski, D. & Levy, R. Anti-idiotype antibody response after vaccination correlates with better overall survival in follicular lymphoma. Blood 113, 5743–5746 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Levy, R. et al. Active idiotypic vaccination versus control immunotherapy for follicular lymphoma. J. Clin. Oncol. 32, 1797–1803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Schuster, S. J. et al. Vaccination with patient-specific tumor-derived antigen in first remission improves disease-free survival in follicular lymphoma. J. Clin. Oncol. 29, 2787–2794 (2011). This Phase III clinical trial demonstrates that chemotherapy-induced remission maintained for at least 6 months followed by idiotype vaccination prolongs remission duration in patients with follicular lymphoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Freedman, A. et al. Placebo-controlled phase III trial of patient-specific immunotherapy with mitumprotimut-T and granulocyte-macrophage colony-stimulating factor after rituximab in patients with follicular lymphoma. J. Clin. Oncol. 27, 3036–3043 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Bendandi, M. Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures. Nature Rev. Cancer 9, 675–681 (2009).

    Article  CAS  Google Scholar 

  132. Muraro, E., Martorelli, D. & Dolcetti, R. Successes, failures and new perspectives of idiotypic vaccination for B-cell non-Hodgkin lymphomas. Hum. Vaccin. Immunother. 9, 1078–1083 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Choudhury, B. A. et al. Dendritic cells derived in vitro from acute myelogenous leukemia cells stimulate autologous, antileukemic T-cell responses. Blood 93, 780–786 (1999).

    Article  CAS  PubMed  Google Scholar 

  134. Cignetti, A. et al. CD34+ acute myeloid and lymphoid leukemic blasts can be induced to differentiate into dendritic cells. Blood 94, 2048–2055 (1999).

    Article  CAS  PubMed  Google Scholar 

  135. Li, L. et al. Immunotherapy for patients with acute myeloid leukemia using autologous dendritic cells generated from leukemic blasts. Int. J. Oncol. 28, 855–861 (2006).

    CAS  PubMed  Google Scholar 

  136. Ossenkoppele, G. J. et al. Vaccination of chronic myeloid leukemia patients with autologous in vitro cultured leukemic dendritic cells. Leukemia 17, 1424–1426 (2003).

    Article  CAS  PubMed  Google Scholar 

  137. Dessureault, S. et al. A phase-I trial using a universal GM-CSF-producing and CD40L-expressing bystander cell line (GM.CD40L) in the formulation of autologous tumor cell-based vaccines for cancer patients with stage IV disease. Ann. Surg. Oncol. 14, 869–884 (2007).

    Article  PubMed  Google Scholar 

  138. Rousseau, R. F. et al. Immunotherapy of high-risk acute leukemia with a recipient (autologous) vaccine expressing transgenic human CD40L and IL-2 after chemotherapy and allogeneic stem cell transplantation. Blood 107, 1332–1341 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wierda, W. G. et al. A phase I study of immune gene therapy for patients with CLL using a membrane-stable, humanized CD154. Leukemia 24, 1893–1900 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wierda, W. G. et al. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 96, 2917–2924 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Maier, T. et al. Vaccination of patients with cutaneous T-cell lymphoma using intranodal injection of autologous tumor-lysate-pulsed dendritic cells. Blood 102, 2338–2344 (2003).

    Article  CAS  PubMed  Google Scholar 

  142. Hus, I. et al. Vaccination of B-CLL patients with autologous dendritic cells can change the frequency of leukemia antigen-specific CD8+ T cells as well as CD4+CD25+FoxP3+ regulatory T cells toward an antileukemia response. Leukemia 22, 1007–1017 (2008).

    Article  CAS  PubMed  Google Scholar 

  143. Di Nicola, M. et al. Vaccination with autologous tumor-loaded dendritic cells induces clinical and immunologic responses in indolent B-cell lymphoma patients with relapsed and measurable disease: a pilot study. Blood 113, 18–27 (2009).

    Article  CAS  PubMed  Google Scholar 

  144. Rosenblatt, J. et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin. Cancer Res. 19, 3640–3648 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rosenblatt, J. et al. Vaccination with dendritic cell/tumor fusion cells results in cellular and humoral antitumor immune responses in patients with multiple myeloma. Blood 117, 393–402 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Brody, J. D. et al. In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J. Clin. Oncol. 28, 4324–4332 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Witzig, T. E. et al. A phase I trial of immunostimulatory CpG 7909 oligodeoxynucleotide and 90 yttrium ibritumomab tiuxetan radioimmunotherapy for relapsed B-cell non-Hodgkin lymphoma. Am. J. Hematol. 88, 589–593 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Burkhardt, U. E. et al. Autologous CLL cell vaccination early after transplant induces leukemia-specific T cells. J. Clin. Invest. 123, 3756–3765 (2013). This study documents that a multi-epitope vaccination strategy in the early post-allogeneic stem cell transplantation setting can boost a tumour-specific immune response despite immunosuppressive medication and still-incomplete immune reconstitution.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Borrello, I., Sotomayor, E. M., Cooke, S. & Levitsky, H. I. A universal granulocyte-macrophage colony-stimulating factor-producing bystander cell line for use in the formulation of autologous tumor cell-based vaccines. Hum. Gene Ther. 10, 1983–1991 (1999).

    Article  CAS  PubMed  Google Scholar 

  150. Smith, B. D. et al. K562/GM-CSF immunotherapy reduces tumor burden in chronic myeloid leukemia patients with residual disease on imatinib mesylate. Clin. Cancer Res. 16, 338–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ho, V. T. et al. Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation. Proc. Natl Acad. Sci. USA 106, 15825–15830 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Surh, C. D. & Sprent, J. Regulation of mature T cell homeostasis. Semin. Immunol. 17, 183–191 (2005).

    Article  CAS  PubMed  Google Scholar 

  153. Norde, W. J., Hobo, W., van der Voort, R. & Dolstra, H. Coinhibitory molecules in hematologic malignancies: targets for therapeutic intervention. Blood 120, 728–736 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Ansell, S. M. et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin. Cancer Res. 15, 6446–6453 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Bashey, A. et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood 113, 1581–1588 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Davids, M. S. et al. A multicenter phase I study of CTLA-4 blockade with ipilimumab for relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. ASH Annu. Meet. Abstr. 124, 3964 (2014).

    Google Scholar 

  158. Wherry, E. J. T cell exhaustion. Nature Immunol. 131, 492–499 (2011).

    Article  CAS  Google Scholar 

  159. Riches, J. C. et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood 121, 1612–1621 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yang, Z. Z. et al. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J. Clin. Invest. 122, 1271–1282 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Green, M. R. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116, 3268–3277 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Topalian, S. L. et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med. 366, 2443–2454 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Armand, P. et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J. Clin. Oncol. 31, 4199–4206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N. Engl. J. Med. 372, 311–319 (2015). References 163 and 164 demonstrate the dramatic sensitivity of B cell lymphomas to PD1 pathway antagonists.

    Article  PubMed  CAS  Google Scholar 

  165. Moskowitz, C. H. et al. PD-1 blockade with the monoclonal antibody pembrolizumab (MK-3475) in patients with classical Hodgkin lymphoma after brentuximab vedotin failure: preliminary results from a phase 1b study (KEYNOTE-013). ASH Annu. Meet. Abstr. 124, 290 (2014).

    Google Scholar 

  166. Lesokhin, A. M. et al. Preliminary results of a phase I study of nivolumab (BMS-936558) in patients with relapsed or refractory lymphoid malignancies. ASH Annu. Meet. Abstr. 124, 291 (2014).

    Google Scholar 

  167. Greaves, P. & Gribben, J. G. The role of B7 family molecules in hematologic malignancy. Blood 121, 734–744 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Wolchok, J. D. et al. Nivolumab plus ipilimumab in advanced melanoma. N. Engl. J. Med. 369, 122–133 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vey, N. et al. A phase 1 trial of the anti-inhibitory KIR mAb IPH2101 for AML in complete remission. Blood 120, 4317–4323 (2012).

    Article  CAS  PubMed  Google Scholar 

  170. Benson, D. M. Jr et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood 120, 4324–4333 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Korde, N. et al. A phase II trial of pan-KIR2D blockade with IPH2101 in smoldering multiple myeloma. Haematologica 99, e81–e83 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Balkwill, F., Montfort, A. & Capasso, M. B regulatory cells in cancer. Trends Immunol. 34, 169–173 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Prince, H. M. et al. Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 28, 1870–1877 (2010).

    Article  CAS  PubMed  Google Scholar 

  174. Baur, A. S. et al. Denileukin diftitox (ONTAK) induces a tolerogenic phenotype in dendritic cells and stimulates survival of resting Treg . Blood 122, 2185–2194 (2013).

    Article  CAS  PubMed  Google Scholar 

  175. Bulliard, Y. et al. Activating Fc γ receptors contribute to the antitumor activities of immunoregulatory receptor-targeting antibodies. J. Exp. Med. 210, 1685–1693 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Simpson, T. R. et al. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J. Exp. Med. 210, 1695–1710 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Westin, J. R. et al. Safety and activity of PD1 blockade by pidilizumab in combination with rituximab in patients with relapsed follicular lymphoma: a single group, open-label, phase 2 trial. Lancet Oncol. 15, 69–77 (2014).

    Article  CAS  PubMed  Google Scholar 

  178. Davis, T. A. et al. Rituximab anti-CD20 monoclonal antibody therapy in non-Hodgkin's lymphoma: safety and efficacy of re-treatment. J. Clin. Oncol. 18, 3135–3143 (2000).

    Article  CAS  PubMed  Google Scholar 

  179. Bachanova, V. et al. Clearance of acute myeloid leukemia by haploidentical natural killer cells is improved using IL-2 diphtheria toxin fusion protein. Blood 25, 3855–3863 (2014).

    Article  CAS  Google Scholar 

  180. Spisek, R. et al. Frequent and specific immunity to the embryonal stem cell-associated antigen SOX2 in patients with monoclonal gammopathy. J. Exp. Med. 204, 831–840 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Richter, J. et al. Clinical regressions and broad immune activation following combination therapy targeting human NKT cells in myeloma. Blood 121, 423–430 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Bachireddy, P. et al. Reversal of in situ T-cell exhaustion during effective human antileukemia responses to donor lymphocyte infusion. Blood 123, 1412–1421 (2014). The authors use T cell-derived molecular signatures to explain the mechanism of DLI efficacy and predict DLI responses in a preliminary study cohort.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Jenq, R. R. & van den Brink, M. R. Allogeneic haematopoietic stem cell transplantation: individualized stem cell and immune therapy of cancer. Nature Rev. Cancer 10, 213–221 (2010).

    Article  CAS  Google Scholar 

  184. Wu, C. J. & Ritz, J. Induction of tumor immunity following allogeneic stem cell transplantation. Adv. Immunol. 90, 133–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  185. Topalian, S. L., Weiner, G. J. & Pardoll, D. M. Cancer immunotherapy comes of age. J. Clin. Oncol. 29, 4828–4836 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ribeiro, D., Melao, A. & Barata, J. T. IL-7R-mediated signaling in T-cell acute lymphoblastic leukemia. Adv. Biol. Regul. 53, 211–222 (2013).

    Article  CAS  PubMed  Google Scholar 

  187. Zenatti, P. P. et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nature Genet. 43, 932–939 (2011).

    Article  CAS  PubMed  Google Scholar 

  188. Digel, W. et al. Human interleukin-7 induces proliferation of neoplastic cells from chronic lymphocytic leukemia and acute leukemias. Blood 78, 753–759 (1991).

    Article  CAS  PubMed  Google Scholar 

  189. Swainson, L. et al. IL-7-induced proliferation of recent thymic emigrants requires activation of the PI3K pathway. Blood 109, 1034–1042 (2007).

    Article  CAS  PubMed  Google Scholar 

  190. Barata, J. T. et al. Activation of PI3K is indispensable for interleukin 7-mediated viability, proliferation, glucose use, and growth of T cell acute lymphoblastic leukemia cells. J. Exp. Med. 200, 659–669 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Dühren-von Minden, M. et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 489, 309–312 (2012).

    Article  PubMed  CAS  Google Scholar 

  192. Davis, R. E. et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463, 88–92 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Byrd, J. C. et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 369, 32–42 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Wang, M. L. et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 369, 507–516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Vanneman, M. & Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nature Rev. Cancer 12, 237–251 (2012).

    Article  CAS  Google Scholar 

  196. Rakhra, K. et al. CD4+ T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18, 485–498 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Knight, D. A. et al. Host immunity contributes to the anti-melanoma activity of BRAF inhibitors. J. Clin. Invest. 123, 1371–1381 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Akbay, E. A. et al. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov. 3, 1355–1363 (2013).

    Article  CAS  PubMed  Google Scholar 

  199. Preudhomme, C. et al. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N. Engl. J. Med. 363, 2511–2521 (2010).

    Article  CAS  PubMed  Google Scholar 

  200. Savani, B. N. et al. Imatinib synergizes with donor lymphocyte infusions to achieve rapid molecular remission of CML relapsing after allogeneic stem cell transplantation. Bone Marrow Transplant. 36, 1009–1015 (2005).

    Article  CAS  PubMed  Google Scholar 

  201. Stewart, A. K. How thalidomide works against cancer. Science 343, 256–257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. James, D. F. et al. Lenalidomide and rituximab for the initial treatment of patients with chronic lymphocytic leukemia: a multicenter clinical-translational study from the Chronic Lymphocytic Leukemia Research Consortium. J. Clin. Oncol. 32, 2067–2073 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Kronke, J. et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 343, 301–305 (2014).

    Article  PubMed  CAS  Google Scholar 

  204. Ramsay, A. G. et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J. Clin. Invest. 118, 2427–2437 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Shanafelt, T. D. et al. Long-term repair of T-cell synapse activity in a phase II trial of chemoimmunotherapy followed by lenalidomide consolidation in previously untreated chronic lymphocytic leukemia (CLL). Blood 121, 4137–4141 (2013).

    Article  CAS  PubMed  Google Scholar 

  206. Galustian, C. et al. The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol. Immunother. 58, 1033–1045 (2009).

    Article  CAS  PubMed  Google Scholar 

  207. Patton, D. T. et al. Cutting edge: the phosphoinositide 3-kinase p110δ is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J. Immunol. 177, 6598–6602 (2006).

    Article  CAS  PubMed  Google Scholar 

  208. Dubovsky, J. A. et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a TH1-selective pressure in T lymphocytes. Blood 122, 2539–2549 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Heslop, H. E. et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood 115, 925–935 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bollard, C. M. et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein–Barr virus latent membrane proteins. J. Clin. Oncol. 32, 798–808 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Rajasagi, M. et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 3, 453–462 (2014).

    Article  CAS  Google Scholar 

  212. Fritsch, E. F. et al. HLA-binding properties of tumor neoepitopes in humans. Cancer Immunol. Res. 2, 522–529 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.B. was supported by the US National Cancer Institute under award number T32CA009172. U.E.B. acknowledges support from the German Research Foundation (Deutsche Forschungsgemeinschaft; BU 3028/1-1). C.J.W. is supported in parts by grants NHGRI (U54HG003067), NCI (1RO1CA155010-02) and NHLBI (5R01HL103532-03); the Blavatinik Family Foundation; and the Leukaemia and Lymphoma Translational Research Program. C.J.W. is a recipient of an Innovative Research Grant for Stand Up to Cancer/AACR. The authors thank E. Fritsch, J. Ritz, R. Soiffer and P. Ott for valuable feedback on and discussion of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine J. Wu.

Ethics declarations

Competing interests

Pavan Bachireddy is a consultant for Jounce Therapeutics.

Related links

PowerPoint slides

Glossary

Professional antigen-presenting cells

(Professional APCs). Professional APCs comprise three major types of immune cells: dendritic cells, macrophages and B cells. Although all nucleated cell types can present intracellularly derived peptides on the ubiquitously expressed major histocompatibility complex (MHC) class I molecule, these three can additionally present antigens derived from the extracellular space, binding them to MHC class II molecules.

High mobility group box 1

(HMGB1). A DNA-binding protein that, when released by dead or damaged cells, stimulates a robust pro-inflammatory response through the binding of Toll-like receptor 4 on dendritic cells, enhancing tumour antigen presentation and driving chemotherapeutic efficacy.

Nurse-like cells

(NLCs). Stromal-like adherent cells that develop in vitro from peripheral blood mononuclear cells of patients with chronic lymphocytic leukaemia (CLL). They are tightly surrounded by CLL cells and promote their survival.

T helper 1 cell

(TH1 cell). A pro-inflammatory subset of CD4+ T cells defined by interleukin-2 and interferon-γ production, which leads to promotion of cellular immunity through CD8+ cytotoxic T cells, macrophages and natural killer cells.

TH17 cells

(T helper 17 cells). An inflammatory interleukin-17-producing subset of CD4+ T cells that is implicated in many autoimmune diseases.

Regulatory T cells

(TReg cells). A CD4+CD25hi T cell subset known to effectively suppress T cell effector functions as well as proliferation and activation of various immune cells, including antigen-presenting cells, B cells and natural killer cells. TReg cell infiltration has been implicated in multiple disease states, ranging from neoplastic growth to autoimmune dysfunction.

Programmed cell death protein 1

(PD1). An immune-checkpoint receptor expressed on activated T cells, as well as other immune subsets, that primarily functions in peripheral tissues. Binding to its ligands, PDL1 or PDL2, which are expressed on tumour and stromal cells, induces T cell exhaustion.

Natural killer cells

(NK cells). Lacking the antigen-recognition diversity of T and B cell receptors, NK cells function instead through an array of inhibitory and activating cell surface receptors, of which killer-cell immunoglobulin-like receptors have a prominent role.

Hodgkin Reed–Sternberg cells

(HRS cells). Neoplastic cells of B cell origin that serve as hallmarks of classical Hodgkin lymphoma. These cells have unusual morphology and a unique immunophenotype that does not resemble any normal cell in the body.

Bispecific T cell engagers

(BiTEs). Fusion proteins that are composed of two single-chain variable fragments, which are derived from a T cell-specific CD3-specific antibody and a tumour- targeting antibody, respectively.

Granzyme- and perforin-mediated tumour cytotoxicity

The principal mode of targeted cell killing by cytotoxic T cells (after antigen recognition on the surface of the target cell), whereby intracellular cytotoxic granules within T cells release their stores of perforin and granzymes to trigger apoptosis of the target cell.

Philadelphia chromosome

The defining translocation in chronic myeloid leukaemia between two genes on the long arms of chromosome 22 (BCR) and chromosome 9 (ABL), resulting in a novel fusion protein (BCR–ABL) that can be targeted by ABL kinase inhibitors, such as imatinib.

Chimeric antigen receptor

(CAR). A synthetically engineered receptor composed of a single-chain antibody fragment, to confer tumour recognition, coupled with intracellular signalling domains derived from the T cell receptor and a co-stimulatory molecule, most commonly either CD28 or CD137.

CAR T cells

(Chimeric antigen receptor T cells). T cells that are isolated from patients' peripheral blood, genetically modified with CARs, and then activated and expanded ex vivo and subsequently infused back into the patient a few days after a lymphodepleting chemotherapeutic regimen.

Killer-cell immunoglobulin-like receptor

(KIR). Expressed on natural killer cells, this receptor recognizes self-major histocompatibility complex class I molecules and may be activating or inhibitory; as a result, natural killer cells preferentially kill target cells that lack self-MHC class I molecules (that is, KIR ligands).

Idiotype vaccine

A cancer vaccine that targets the unique antigenic determinant located in the variable region of the B or T cell receptor that is expressed by clonally expanded malignant B or T cells, respectively.

Regulatory B cells

(BReg cells). A newly described subpopulation of B cells that remains incompletely defined in humans. BReg cells have been suggested to functionally resemble chronic lymphocytic leukaemia cells in humans and contribute to rituximab resistance in preclinical models.

Myeloid-derived suppressor cells

(MDSCs). A highly heterogeneous population of tolerogenic myeloid-derived cells often described in either granulocytic or monocytic subtypes. MDSCs have been strongly implicated in the pathogenesis of many blood malignancies, including multiple myeloma, chronic myeloid leukaemia and myelodysplasia.

CTL-associated antigen 4

(Cytotoxic T lymphocyte-associated antigen 4). CTLA4 is exclusively expressed on the surface of activated T cells, where it counteracts CD28 both by outcompeting it for its ligands, CD80 and CD86, on antigen-presenting cells and by triggering intracellular inhibitory pathways. It has an important role in maintaining immune homeostasis.

Smouldering multiple myeloma

Early-stage multiple myeloma preceding the active, clinically symptomatic phase.

NK T cells

(Natural killer T cells). A specialized subset of innate-like T cells that recognize lipid-based antigens presented by the CD1 family of major histocompatibility complex-like molecules and rapidly produce very large amounts of various cytokines without clonally expanding like 'classical' T cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachireddy, P., Burkhardt, U., Rajasagi, M. et al. Haematological malignancies: at the forefront of immunotherapeutic innovation. Nat Rev Cancer 15, 201–215 (2015). https://doi.org/10.1038/nrc3907

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc3907

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer