Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Immune evasion in human papillomavirus-associated cervical cancer

Abstract

Tumour-associated viruses produce antigens that, on the face of it, are ideal targets for immunotherapy. Unfortunately, these viruses are experts at avoiding or subverting the host immune response. Cervical-cancer-associated human papillomavirus (HPV) has a battery of immune-evasion mechanisms at its disposal that could confound attempts at HPV-directed immunotherapy. Other virally associated human cancers might prove similarly refractive to immuno-intervention unless we learn how to circumvent their strategies for immune evasion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The biology of HPV infection.
Figure 2: How the adaptive immune system 'sees' and responds to tumour (or other foreign) antigens inside cells.
Figure 3: Protective specific immunity to E7 epithelial tumour antigen by administration of an inflammatory stimulus.
Figure 4: E7 in peripheral epithelium tolerizes the CTL response.

Similar content being viewed by others

References

  1. Zhou, J., Liu, W. J., Peng, S. W., Sun, X. Y. & Frazer, I. Papillomavirus capsid protein expression level depends on the match between codon usage and tRNA availability. J. Virol. 73, 4972–4982 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Schwartz, S. Regulation of human papillomavirus late gene expression. Ups. J. Med. Sci. 105, 171–192 (2000).

    CAS  PubMed  Google Scholar 

  3. Nees, M. et al. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-κB-responsive genes in cervical keratinocytes. J. Virol. 75, 4283–4296 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Barnard, P., Payne, E. & McMillan, N. A. The human papillomavirus E7 protein is able to inhibit the antiviral and anti-growth functions of interferon-α. Virology 277, 411–419 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Park, J. S. et al. Inactivation of interferon regulatory factor-1 tumor suppressor protein by HPV E7 oncoprotein. Implication for the E7-mediated immune evasion mechanism in cervical carcinogenesis. J. Biol. Chem. 275, 6764–6769 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Arany, I., Goel, A. & Tyring, S. K. Interferon response depends on viral transcription in human papillomavirus containing lesions. Anticancer Res. 15, 2865–2870 (1995).

    CAS  PubMed  Google Scholar 

  7. Rescigno, M. et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nature Immunol. 2, 361–367 (2001).

    Article  CAS  Google Scholar 

  8. Li, M. et al. Cell-associated ovalbumin is cross-presented much more efficiently than soluble ovalbumin in vivo. J. Immunol. 166, 6099–6103 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Wolfers, J. et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Med. 7, 297–303 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Frazer, I. H. et al. Systemic administration of bacterial products induces host protective specific immunity to an epithelial tumour antigen. J. Immunol. 167, 6180–6187 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Doan, T. et al. Human papillomavirus type 16 E7 oncoprotein expressed in peripheral epithelium tolerizes E7-directed cytotoxic T-lymphocyte precursors restricted through human (and mouse) major histocompatibility complex class I alleles. J. Virol. 73, 6166–6170 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Giannini, S. L. et al. Cytokine expression in squamous intraepithelial lesions of the uterine cervix: implications for the generation of local immunosuppression. Clin. Exp. Immunol. 113, 183–189 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geissmann, F. et al. TGF-β1 prevents the noncognate maturation of human dendritic Langerhans cells. J. Immunol. 162, 4567–4575 (1999).

    CAS  PubMed  Google Scholar 

  14. Hemmi, H. et al. Skin antigens in the steady state are trafficked to regional lymph nodes by transforming growth factor-β1-dependent cells. Int. Immunol. 13, 695–704 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Hoffmann, T. K., Meidenbauer, N., Dworacki, G., Kanaya, H. & Whiteside, T. L. Generation of tumor-specific T-lymphocytes by cross-priming with human dendritic cells ingesting apoptotic tumor cells. Cancer Res. 60, 3542–3549 (2000).

    CAS  PubMed  Google Scholar 

  16. Albert, M. L., Jegathesan, M. & Darnell, R. B. Dendritic cell maturation is required for the cross-tolerization of CD8+ T cells. Nature Immunol. 2, 1010–1017 (2001).

    Article  CAS  Google Scholar 

  17. Suri-Payer, E., Amar, A. Z., Thornton, A. M. & Shevach, E. M. CD4+CD25+ T cells inhibit both the induction and effector function of autoreactive T cells and represent a unique lineage of immunoregulatory cells. J. Immunol. 160, 1212–1218 (1998).

    CAS  PubMed  Google Scholar 

  18. Grohmann, U. et al. CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J. Immunol. 166, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Dhodapkar, M. V., Steinman, R. M., Krasovsky, J., Munz, C. & Bhardwaj, N. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J. Exp. Med. 193, 233–238 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Roncarolo, M. G., Levings, M. K. & Traversari, C. Differentiation of T regulatory cells by immature dendritic cells. J. Exp. Med. 193, F5–F9 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Corinti, S., Albanesi, C., la Sala, A., Pastore, S. & Girolomoni, G. Regulatory activity of autocrine IL-10 on dendritic cell functions. J. Immunol. 166, 4312–4318 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Ressing, M. E. et al. Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vitro and in vivo immunogenicity studies of HLA-A*0201-binding peptides. J. Immunol. 154, 5934–5943 (1995).

    CAS  PubMed  Google Scholar 

  23. Tindle, R. W. et al. Nonspecific down-regulation of CD8+ T-cell responses in mice expressing human papillomavirus type 16 E7 oncoprotein from the keratin-14 promoter. J. Virol. 75, 5985–5997 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lambrecht, B. N., Pauwels, R. A. & Fazekas De St Groth, B. Induction of rapid T cell activation, division, and recirculation by intratracheal injection of dendritic cells in a TCR transgenic model. J. Immunol. 164, 2937–2946 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Harshyne, L. A., Watkins, S. C., Gambotto, A. & Barratt-Boyes, S. M. Dendritic cells acquire antigens from live cells for cross-presentation to CTL. J. Immunol. 166, 3717–3723 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Natale, C., Giannini, T., Lucchese, A. & Kanduc, D. Computer-assisted analysis of molecular mimicry between human papillomavirus 16 E7 oncoprotein and human protein sequences. Immunol. Cell Biol. 78, 580–585 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, S. J. et al. Both E6 and E7 oncoproteins of human papillomavirus 16 inhibit IL-18- induced IFN-γ production in human peripheral blood mononuclear and NK cells. J. Immunol. 167, 497–504 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Le Buanec, H. et al. Induction of cellular immunosuppression by the human papillomavirus type 16 E7 oncogenic protein. Biomed. Pharmacother. 53, 323–328 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Cho, Y.-S. et al. Down modulation of IL-18 expression by human papillomavirus type 16 E6 oncogene via binding to IL-18. FEBS Lett. 501, 139–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Straight, S. W., Herman, B. & McCance, D. J. The E5 oncoprotein of human papillomavirus type 16 inhibits the acidification of endosomes in human keratinocytes. J. Virol. 69, 3185–3192 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gabrilovich, D. I., Velders, M. P., Sotomayor, E. M. & Kast, W. M. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+ myeloid cells. J. Immunol. 166, 5398–5406 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Sheu, B. C. et al. A novel role of metalloproteinase in cancer-mediated immunosuppression. Cancer Res. 61, 237–242 (2001).

    CAS  PubMed  Google Scholar 

  33. Brady, C. S. et al. Multiple mechanisms underlie HLA dysregulation in cervical cancer. Tissue Antigens 55, 401–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Evans, M. et al. Antigen processing defects in cervical carcinomas limit the presentation of a CTL epitope from human papillomavirus 16 E6. J. Immunol. 167, 5420–5428 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Wang, S. S. et al. Human leucocyte antigen class I and II alleles and risk of cervical neoplasia: results from a population-based study in Costa Rica. J. Infect. Dis. 184, 1310–1314 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Krul, E. J. T. et al. HLA susceptibility to cervical neoplasia. Hum. Immunol. 60, 337–342 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Sasaki, S., Amara, R. R., Oran. A. E., Smith, J. M. & Robinson, H. L. Apoptosis-mediated enhancement of DNA-raised immune responses by mutant caspases. Nature Biotechnol. 19, 543–547 (2001).

    Article  CAS  Google Scholar 

  38. Restifo, N. P. Building better vaccines: how apoptotic cell death can induce inflammation and activate innate and adaptive immunity. Curr. Opin. Immunol. 12, 597–603 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Biragyn, A. & Kwak, L. W. Designer cancer vaccines are still in fashion. Nature Med. 6, 966–968 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Fabre, J. W. The allogeneic response and tumor immunity. Nature Med. 7, 649–652 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Coussens, L. M., Tinkle, C. L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosenberg, S. A. Progress in human tumour immunology and immunotherapy. Nature 411, 380–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Muller, A., Schmitt, L., Raftery, M. & Schonrich, G. Paralysis of B7 co-stimulation through the effect of viral IL-10 on T cells as a mechanism of local tolerance induction. Eur. J. Immunol. 28, 3488–3498 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Huang, H., Pan, X. & Zhou, J. BHRF1 antisense oligonucleotide inhibits anti-apoptosis of nasopharyngeal carcinoma cells. Int. J. Mol. Med. 4, 649–653 (1999).

    CAS  PubMed  Google Scholar 

  45. Sette, A. D. et al. Overcoming T cell tolerance to the hepatitis B virus surface antigen in hepatitis B virus-transgenic mice. J. Immunol. 166, 1389–1397 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Anderson, C. C. et al. Testing time-, ignorance-, and danger-based models of tolerance. J. Immunol. 166, 3663–3671 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Fernando, G. J., Stewart, T. J., Tindle, R. W. & Frazer, I. H. Th2-type CD4+ cells neither enhance nor suppress antitumor CTL activity in a mouse tumor model. J. Immunol. 161, 2421–2427 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks R. Thomas for helpful discussion.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

CancerNet:

Burkitt's lymphoma

Hodgkin's lymphomas

cancer of the uterine cervix

 GenBank:

E6

E7

EBV

HBV

HPV16

 LocusLink:

B7

CD28

IFN-α

IFN-β

IFN-γ

IL-1

IL-1β

IL-10

IL-12

IL-13

IL-18

p53

RB

transforming growth factor-β

tumour necrosis factor-α

FURTHER READING

A Brief Guide to the Immunology of Peripheral Tolerance

Antitumour Immune Response and Cancer Vaccination: The Critical Role of Dendritic Cells

Schematic representation of cervical neoplasia: animated

Tolerance web site

Glossary

ADJUVANT

Any substance that nonspecifically enhances the immune response to antigen.

ALLOGENEIC

Inter-individual genetic variation at the MHC locus. In the semi-allogeneic situation reported in this article, MHC antigens are shared by donor and recipient, but in addition the donor has some MHC antigens that the recipient does not

ANERGY

A state in which T cells cannot respond to antigen.

ANTIGEN-PRESENTING CELLS (APCs)

Cells that process antigen and present antigen fragments to other cells of the immune system (cross-presentation) to initiate an immune response. Dendritic cells are the most potent APCs.

CD4 HELP

The secretion of cytokines, particularly interleukin-2, that are necessary for the expression of effector function by other cells in the immune system, especially CD8+ T cells.

CD40 LIGAND

A molecule on CD4+ T cells that, when it binds CD40 on dendritic cells, stimulates them to mature.

CD8+ T CELL

T cell bearing the CD8+ cell-surface glycoprotein, which recognizes MHC class I molecules on target cells. CD8+ T cells are usually cytotoxic T cells.

CONDYLOMA

Papillomavirus-associated soft wart on genital mucosal epithelium.

DECOY CYTOKINE

A molecule encoded by the genome of an invading organism that mimics the effect of a host cytokine and manipulates the immune response to the invader's advantage.

EARLY PROTEINS

Gene products translated from the first mRNAs that are produced from the viral genome, before viral replication gets underway.

GENITAL HYPERPLASIA

Dysregulated proliferation of keratinocytes of genital epithelium.

LANGERHANS CELLS

A subset of antigen-presenting cells in the epithelium.

LATE PROTEINS.

After viral DNA replication, 'late' viral genes become available for transcription. Their mRNAs encode structural proteins (L1 and L2 in HPV), which form the capsids of new virions.

MAJOR HISTOCOMPATIBILITY COMPLEX (MHC)

A genetic region encoding proteins that are involved in antigen presentation to T cells. MHC class I molecules bound to peptide are recognized by the T-cell receptors of CD8+ T cells.

MATURATION OF DENDRITIC CELLS

A process that is instigated by inflammatory cytokines, in which dendritic cells acquire co-stimulatory molecules that allow them to interact with and transmit activating signal(s) to specific T cells.

NATURAL KILLER (NK) CELLS

Large granular lymphocytes that do not bear a T-cell receptor, but can recognize and destroy certain tumour cells and virally infected cells in an MHC-independent manner.

REDUNDANCY IN THE GENETIC CODE

Several nucleotide triplets can encode the same amino acid and, correspondingly, several tRNAs are observed for that amino acid. Differences in abundance of different tRNAs are observed between species and sometimes between tissues in the same species.

SYNGENEIC

Genetically identical, for example, a fully inbred strain of mouse.

TRANSPORTER ASSOCIATED WITH ANTIGEN PROCESSING (TAP)

The peptide products of protein degradation in cytoplasm are transported by TAP molecules to the endoplasmic reticulum where they are loaded onto MHC molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tindle, R. Immune evasion in human papillomavirus-associated cervical cancer. Nat Rev Cancer 2, 59–64 (2002). https://doi.org/10.1038/nrc700

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc700

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing