Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aids-related malignancies

Key Points

  • Several different types of cancer are observed at an increased frequency in acquired immune deficiency syndrome (AIDS) patients and in other immunosuppressed individuals. Most of these are virus-associated cancers.

  • Kaposi's sarcoma (KS) is the most common neoplasm that occurs in patients with AIDS (AIDS-KS). KS is believed to be caused by Kaposi's-sarcoma-associated herpesvirus/human herpesvirus 8 (KSHV/HHV-8), but the tumour microenvironment is an important aspect of KS progression.

  • AIDS-lymphoma is another significant cause of morbidity and mortality in human immunodeficiency virus (HIV)-infected individuals. Over 50% of AIDS lymphomas are associated with Epstein–Barr virus (EBV) and/or KSHV infection. EBV activates B-cell precursors, leading to a transformed phenotype.

  • Human papillomavirus (HPV)-related cancers are another type of AIDS-related malignancy. There are likely to be two mechanisms by which papillomaviruses induce neoplasia — by altering the tumour microenvironment, and by directly disrupting cell differentiation, to induce cell proliferation.

  • Antiviral strategies might be used to prevent cancer in AIDS patients. For example, highly active antiretroviral therapy has been shown to prevent or stop the progression of KS in AIDS patients.

Abstract

Cancer remains a significant burden for human immunodeficiency virus (HIV)-infected individuals. Most cancers that are associated with HIV infection are driven by oncogenic viruses, such as Epstein–Barr virus, Kaposi's sarcoma-associated herpesvirus and human papillomavirus. Gaining insight into the epidemiology and mechanisms that underlie AIDS-related cancers has provided us with a better understanding of cancer immunity and viral oncogenesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Putative pathways of endothelial-cell and Kaposi's sarcoma spindle-cell differentiation.

Similar content being viewed by others

Linda-Gail Bekker, Chris Beyrer, … Jeffrey V. Lazarus

References

  1. Sondel, P. M., Rakhmilevich, A. L., de Jong, J. L. O. & Hank, J. A. in The Molecular Basis of Cancer (eds Mendelsohn, J., Howley, P. M., Israel, M. A. & Liotta, L. A.) 535–571 (W. B. Saunders Company, Philadelpia, 2001).

    Google Scholar 

  2. Burnet, F. M. Immunologic surveillance in neoplasia. Transplant. Rev. 7, 3 (1971).

    CAS  PubMed  Google Scholar 

  3. Gross, L. Intradermal immunization of C3H mice against sarcoma that originated in an animal of the same line. Cancer Res. 3, 326 (1943).

    Google Scholar 

  4. Klein, G. & Klein, E. Genetic studies of the relationship of tumour-host cells. Nature 178, 1389 (1956).

    Article  CAS  PubMed  Google Scholar 

  5. Penn, I. Tumors arising in organ transplant recipients. Adv. Cancer Res. 28, 31–61 (1978).

    Article  CAS  PubMed  Google Scholar 

  6. Frisch, M., Biggar, R. J., Engels, E. A. & Goedert, J. J. Association of cancer with AIDS-related immunosuppression in adults. JAMA 285, 1736–1745 (2001).Analysis of the incidence of cancer among 302,834 adults with HIV/AIDS from 11 geographically diverse areas in the United States.

    Article  CAS  PubMed  Google Scholar 

  7. Stewart, T., Tsai, S. C., Grayson, H., Henderson, R. & Opelz, G. Incidence of de novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet 346, 796–798 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Gallagher, B., Wang, Z., Schymura, M. J., Kahn, A. & Fordyce, E. J. Cancer incidence in New York State acquired immunodeficiency syndrome patients. Am. J. Epidemiol. 154, 544–556 (2001).Population-based registry linkage analysis evaluating cancer risk in HIV/AIDS individuals in one of the areas of the United States most heavily afflicted by this disease.

    Article  CAS  PubMed  Google Scholar 

  9. Rickinson, A. B. et al. T cell recognition of Epstein–Barr virus associated lymphomas. Cancer Surv. 13, 53–80 (1992).

    CAS  PubMed  Google Scholar 

  10. Parkin, D. M., Wabinga, H., Nambooze, S. & Wabwire-Mangen, F. AIDS-related cancers in Africa: maturation of the epidemic in Uganda. AIDS 13, 2563–2570 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Kaposi, M. Idiopathisches multiplespigmentsarcom der haut. Arch. Dermatologie Syphillis 4, 265–273 (1872).

    Google Scholar 

  12. Franceschi, S. & Serraino, D. Kaposi's sarcoma and KSHV. Lancet 346, 1360–1361 (1995).

    CAS  PubMed  Google Scholar 

  13. Rothman, S. in Symposium on Kaposi's sarcoma (eds Ackerman, L. V. & Murray, J. F.) (Karger, Basel, 1962).

    Google Scholar 

  14. d'Oliveira, J. J. & Torres, F. O. Kaposi's sarcoma in the Bantu of Mozambique. Cancer 30, 553–561 (1972).

    Article  CAS  PubMed  Google Scholar 

  15. Olweny, C. L. Etiology of endemic Kaposi's sarcoma. IARC Sci. Publ. 63, 543–548 (1984).

    Google Scholar 

  16. Oettle, A. G. in Symposium on Kaposi's sarcoma (eds Ackerman, L. V. & Murray, J. F.) (Karger, Basel, 1962).

    Google Scholar 

  17. Harwood, A. R. et al. Kaposi's sarcoma in recipients of renal transplants. Am. J. Med. 67, 759–765 (1979).

    Article  CAS  PubMed  Google Scholar 

  18. Penn, I. Kaposi's sarcoma in transplant recipients. Transplantation 64, 669–673 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Qunibi, W. et al. Kaposi's sarcoma: the most common tumor after renal transplantation in Saudi Arabia. Am. J. Med. 84, 225–232 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Franceschi, S. & Geddes, M. Epidemiology of clasic Kaposi's sarcoma, with special reference to Mediterranean population. Tumori 81, 308–314 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Beral, V., Peterman, T. A., Berkelman, R. L. & Jaffe, H. W. Kaposi's sarcoma among persons with AIDS: a sexually transmitted infection? Lancet 335, 123–128 (1990).One of the first studies to indicate that an infectious agent other than HIV is involved in the pathogenesis of AIDS/KS.

    Article  CAS  PubMed  Google Scholar 

  22. Rabkin, C. S. & Yellin, F. Cancer incidence in a population with a high prevalence of infection with human immunodeficiency virus type 1. J. Natl Cancer Inst. 86, 1711–1716 (1994).Large study that examines the risk of cancer in gay men who are at risk of HIV/AIDS before the use of antiretroviral treatment.

    Article  CAS  PubMed  Google Scholar 

  23. Rabkin, C. S., Goedert, J. J., Biggar, R. J., Yellin, F. & Blattner, W. A. Kaposi's sarcoma in three HIV-1-infected cohorts. J. Acquir. Immune Defic. Syndr. 3 (Suppl. 1), S38–S43 (1990).

    PubMed  Google Scholar 

  24. Chang, Y. et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266, 1865–1869 (1994).One of the most successful and important applications of Lisitsyn's representational difference analysis (RDA): the identification of KSHV sequences in AIDS/KS.

    Article  CAS  PubMed  Google Scholar 

  25. Kedes, D. H. et al. The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): distribution of infection in KS risk groups and evidence for sexual transmission. Nature Med. 2, 918–924 (1996).One of the first seroepidemiological studies that confirmed the link between KSHV and AIDS/KS.

    Article  CAS  PubMed  Google Scholar 

  26. Gao, S. J. et al. KSHV antibodies among Americans, Italians and Ugandans with and without Kaposi's sarcoma. Nature Med. 2, 925–928 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Liotta, L. A. & Kohn, E. C. The microenvironment of the tumour-host interface. Nature 411, 375–379 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Coussens, L. M. & Werb, Z. Inflammatory cells and cancer: think different! J. Exp. Med. 193, F23–F26 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bissell, M. J. & Radisky, D. Putting tumours into context. Nature Rev. Cancer 1, 46–54 (2001).

    Article  CAS  Google Scholar 

  30. Berd, D. & Prehn, R. T. Peritoneal macrophage response to leukemia L1210 in syngeneic mice. J. Natl Cancer Inst. 58, 1729–1734 (1977).

    Article  CAS  PubMed  Google Scholar 

  31. Ensoli, B., Salahuddin, S. Z. & Gallo, R. C. AIDS-associated Kaposi's sarcoma: a molecular model for its pathogenesis. Cancer Cells 1, 93–96 (1989).

    CAS  PubMed  Google Scholar 

  32. Gallo, R. C. The enigmas of Kaposi's sarcoma. Science 282, 1837–1839 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Rabkin, C. S. et al. Monoclonal origin of multicentric Kaposi's sarcoma lesions. N. Engl. J. Med. 336, 988–993 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Gill, P. S. et al. Evidence for multiclonality in multicentric Kaposi's sarcoma. Proc. Natl Acad. Sci. USA 95, 8257–8261 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Roth, W. K., Brandstetter, H. & Sturzl, M. Cellular and molecular features of HIV-associated Kaposi's sarcoma. AIDS 6, 895–913 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Veikkola, T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 20, 1223–1231 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jussila, L. et al. Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Res. 58, 1599–1604 (1998).

    CAS  PubMed  Google Scholar 

  38. Dupin, N. et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. Proc. Natl Acad. Sci. USA 96, 4546–4551 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weninger, W. et al. Expression of vascular endothelial growth factor receptor-3 and podoplanin suggests a lymphatic endothelial cell origin of Kaposi's sarcoma tumor cells. Lab. Invest. 79, 243–251 (1999).

    CAS  PubMed  Google Scholar 

  40. Salahuddin, S. Z. et al. Angiogenic properties of Kaposi's sarcoma-derived cells after long-term culture in vitro. Science 242, 430–433 (1988).

    Article  CAS  PubMed  Google Scholar 

  41. Miles, S. A. et al. AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc. Natl Acad. Sci. USA 87, 4068–4072 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ensoli, B. et al. AIDS-Kaposi's sarcoma-derived cells express cytokines with autocrine and paracrine growth effects. Science 243, 223–226 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Fiorelli, V. et al. γ-Interferon produced by CD8+ T cells infiltrating Kaposi's sarcoma induces spindle cells with angiogenic phenotype and synergy with human immunodeficiency virus-1 Tat protein: an immune response to human herpesvirus-8 infection? Blood 91, 956–967 (1998).

    CAS  PubMed  Google Scholar 

  44. Ensoli, B., Barillari, G. & Gallo, R. C. Cytokines and growth factors in the pathogenesis of AIDS-associated Kaposi's sarcoma. Immunol. Rev. 127, 147–155 (1992).

    Article  CAS  PubMed  Google Scholar 

  45. Albini, A., Barillari, G., Benelli, R., Gallo, R. C. & Ensoli, B. Angiogenic properties of human immunodeficiency virus type 1 Tat protein. Proc. Natl Acad. Sci. USA 92, 4838–4842 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vogel, J., Hinrichs, S. H., Reynolds, R. K., Luciw, P. A. & Jay, G. The HIV tat gene induces dermal lesions resembling Kaposi's sarcoma in transgenic mice. Nature 335, 606–611 (1988).

    Article  CAS  PubMed  Google Scholar 

  47. Proceedings of the IARC Working Group on the evaluation of carcinogenic risks to humans. Epstein–Barr virus and Kaposi's sarcoma herpesvirus/human herpesvirus-8. Lyon, France, 17–24 June 1997. IARC Monogr Eval. Carcinog. Risks Hum. 70, 1–492 (1997).

  48. Whitby, D. et al. Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma. Lancet 346, 799–802 (1995).

    Article  CAS  PubMed  Google Scholar 

  49. Moore, P. S. et al. Kaposi's sarcoma-associated herpesvirus infection prior to onset of Kaposi's sarcoma. AIDS 10, 175–180 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Chatlynne, L. G. & Ablashi, D. V. Seroepidemiology of Kaposi's sarcoma-associated herpesvirus (KSHV). Semin. Cancer Biol. 9, 175–185 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Staskus, K. A. et al. Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. J. Virol. 71, 715–719 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sturzl, M. et al. Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi's sarcoma. Int. J. Cancer 72, 68–71 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Radkov, S. A., Kellam, P. & Boshoff, C. The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma–E2F pathway and with the oncogene Hras transforms primary rat cells. Nature Med. 6, 1121–1127 (2000).First study to show that KSHV, like other oncogenic viruses, encodes for a latent transforming protein that targets the retinoblastoma tumour-suppressor pathway.

    Article  CAS  PubMed  Google Scholar 

  54. An, J., Lichtenstein, A. K., Brent, G. & Rettig, M. B. The Kaposi sarcoma-associated herpesvirus (KSHV) induces cellular interleukin 6 expression: role of the KSHV latency-associated nuclear antigen and the AP1 response element. Blood 99, 649–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Judde, J. G. et al. Monoclonality or oligoclonality of human herpesvirus 8 terminal repeat sequences in Kaposi's sarcoma and other diseases. J. Natl Cancer Inst. 92, 729–736 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Ablashi, D. et al. Seroprevalence of human herpesvirus-8 (HHV-8) in countries of Southeast Asia compared to the USA, the Caribbean and Africa. Br. J. Cancer 81, 893–897 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Davidovici, B. et al. Seroepidemiology and molecular epidemiology of Kaposi's sarcoma-associated herpesvirus among Jewish population groups in Israel. J. Natl Cancer Inst. 93, 194–202 (2001).Definitive sero-epidemiological study showing that KSHV is transmitted among family members in a Western population.

    Article  CAS  PubMed  Google Scholar 

  58. Mayama, S. et al. Prevalence and transmission of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) in Ugandan children and adolescents. Int. J. Cancer 77, 817–820 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Sitas, F. et al. Antibodies against human herpesvirus 8 in black South African patients with cancer. N. Engl. J. Med. 340, 1863–1871 (1999).

    Article  CAS  PubMed  Google Scholar 

  60. Koelle, D. M. et al. Frequent detection of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) DNA in saliva of human immunodeficiency virus-infected men: clinical and immunologic correlates. J. Infect. Dis. 176, 94–102 (1997).

    Article  CAS  PubMed  Google Scholar 

  61. Pauk, J. et al. Mucosal shedding of human herpesvirus 8 in men. N. Engl. J. Med. 343, 1369–1377 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Olsen, S. J., Chang, Y., Moore, P. S., Biggar, R. J. & Melbye, M. Increasing Kaposi's sarcoma-associated herpesvirus seroprevalence with age in a highly Kaposi's sarcoma endemic region, Zambia in 1985. AIDS 12, 1921–1925 (1998).

    Article  CAS  PubMed  Google Scholar 

  63. Gessain, A. et al. Human herpesvirus 8 primary infection occurs during childhood in Cameroon, Central Africa. Int. J. Cancer 81, 189–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  64. Plancoulaine, S. et al. Human herpesvirus 8 transmission from mother to child and between siblings in an endemic population. Lancet 356, 1062–1065 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Ariyoshi, K. et al. Kaposi's sarcoma in the Gambia, West Africa is less frequent in human immunodeficiency virus type 2 than in human immunodeficiency virus type 1 infection despite a high prevalence of human herpesvirus 8. J. Hum. Virol. 1, 193–199 (1998).

    CAS  PubMed  Google Scholar 

  66. Goudsmit, J. et al. Human herpesvirus 8 infections in the Amsterdam Cohort Studies (1984–1997): analysis of seroconversions to ORF65 and ORF73. Proc. Natl Acad. Sci. USA 97, 4838–4843 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ziegler, J. L. et al. Risk factors for Kaposi's sarcoma in HIV-positive subjects in Uganda. AIDS 11, 1619–1626 (1997).

    Article  CAS  PubMed  Google Scholar 

  68. Lunardi-Iskandar, Y. et al. Tumorigenesis and metastasis of neoplastic Kaposi's sarcoma cell line in immunodeficient mice blocked by a human pregnancy hormone. Nature 375, 64–68 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Thorley-Lawson, D. A. Epstein–Barr virus: exploiting the immune system. Nature Rev. Immunol. 1, 75–82 (2001).Important review arguing that Epstein–Barr virus exploits the normal maturation/differentiation of B lymphocytes for its own replication and survival.

    Article  CAS  Google Scholar 

  70. Klein, G. Epstein–Barr virus strategy in normal and neoplastic B cells. Cell 77, 791–793 (1994).

    Article  CAS  PubMed  Google Scholar 

  71. Babcock, G. J. & Thorley-Lawson, D. A. Tonsillar memory B cells, latently infected with Epstein–Barr virus, express the restricted pattern of latent genes previously found only in Epstein–Barr virus-associated tumors. Proc. Natl Acad. Sci. USA 97, 12250–12255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kuppers, R., Klein, U., Hansmann, M. L. & Rajewsky, K. Cellular origin of human B-cell lymphomas. N. Engl. J. Med. 341, 1520–1529 (1999).

    Article  CAS  PubMed  Google Scholar 

  73. Gaidano, G. & Della-Favera, R. in The Molecular Basis of Cancer (eds Mendelsohn, J., Howley,P. M., Israel, M. A. & Liotta, L. A.) 189–237 (W. B. Saunders Company, Philadelphia, 2001).

    Google Scholar 

  74. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W. & Knowles, D. M. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N. Engl. J. Med. 332, 1186–1191 (1995).

    Article  CAS  PubMed  Google Scholar 

  75. Soulier, J. et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86, 1276–1280 (1995).

    Article  CAS  PubMed  Google Scholar 

  76. Shirai, A., Cosentino, M., Leitman-Klinman, S. F. & Klinman, D. M. Human immunodeficiency virus infection induces both polyclonal and virus-specific B cell activation. J. Clin. Invest. 89, 561–566 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Grulich, A. E. et al. B-cell stimulation and prolonged immune deficiency are risk factors for non-Hodgkin's lymphoma in people with AIDS. AIDS 14, 133–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  78. Lane, H. C. et al. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N. Engl. J. Med. 309, 453–458 (1983).

    Article  CAS  PubMed  Google Scholar 

  79. Cunto-Amesty, G., Przybylski, G., Honczarenko, M., Monroe, J. G. & Silberstein, L. E. Evidence that immunoglobulin specificities of AIDS-related lymphoma are not directed to HIV-related antigens. Blood 95, 1393–1399 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Shope, R. E. Infectious papillomatosis. J. Exp. Med. 58, 607–624 (1933).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rous, P. & Kidd, J. G. The carcinogenic effect of a virus upon tarred skin. Science 83, 468 (1936).

    Article  CAS  PubMed  Google Scholar 

  82. Zur Hausen, H. Human papillomaviruses and their possible role in squamous cell carcinomas. Curr. Top. Microbiol. Immunol. 78, 1 (1977).

    CAS  PubMed  Google Scholar 

  83. Durst, M., Gissmann, L., Ikenberg, H. & zurHausen, H. A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographic regions. Proc. Natl Acad. Sci. USA 80, 3812–3815 (1983).The identification of HPV sequences in cervical cancer and the first study to identify a human DNA tumour virus using only molecular techniques.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lowry, W. S., Clark, D. A. & Hannemann, J. H. Skin cancer and immunosuppression. Lancet 1, 1290–1291 (1972).

    Article  CAS  PubMed  Google Scholar 

  85. Matas, A. J., Simmons, R. L. & Najarian, J. S. Chronic antigenic stimulation, herpesvirus infection, and cancer in transplant recipients. Lancet 1, 1277–1279 (1975).

    Article  CAS  PubMed  Google Scholar 

  86. Frazer, I. H., Medley, G., Crapper, R. M., Brown, T. C. & Mackay, I. R. Association between anorectal dysplasia, human papillomavirus, and human immunodeficiency virus infection in homosexual men. Lancet 2, 657–660 (1986).

    Article  CAS  PubMed  Google Scholar 

  87. Frisch, M., Biggar, R. J. & Goedert, J. J. Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J. Natl Cancer Inst. 92, 1500–1510 (2000).

    Article  CAS  PubMed  Google Scholar 

  88. Ateenyi-Agaba, C. Conjunctival squamous-cell carcinoma associated with HIV infection in Kampala, Uganda. Lancet 345, 695–696 (1995).

    Article  CAS  PubMed  Google Scholar 

  89. Gomousa-Michael, M., Gialama, E., Gomousas, N. & Gialama, G. Genital human papillomavirus infection and associated penile intraepithelial neoplasia in males infected with the human immunodeficiency virus. Acta Cytol. 44, 305–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Trottier, A. M. et al. Human immunodeficiency virus infection is a major risk factor for detection of human papillomavirus DNA in esophageal brushings. Clin. Infect. Dis. 24, 565–569 (1997).

    Article  CAS  PubMed  Google Scholar 

  91. Palefsky, J. M., Holly, E. A., Ralston, M. L. & Jay, N. Prevalence and risk factors for human papillomavirus infection of the anal canal in human immunodeficiency virus (HIV)-positive and HIV- negative homosexual men. J. Infect. Dis. 177, 361–367 (1998).

    Article  CAS  PubMed  Google Scholar 

  92. Palefsky, J. M. et al. Cervicovaginal human papillomavirus infection in human immunodeficiency virus-1 (HIV)-positive and high-risk HIV-negative women. J. Natl Cancer Inst. 91, 226–236 (1999).

    Article  CAS  PubMed  Google Scholar 

  93. Sun, X. W. et al. Human papillomavirus infection in women infected with the human immunodeficiency virus. N. Engl. J. Med. 337, 1343–1349 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Arany, I., Muldrow, M. & Tyring, S. K. Correlation between mRNA levels of IL-6 and TNF-α and progression rate in anal squamous epithelial lesions from HIV-positive men. Anticancer Res. 21, 425–428 (2001).

    CAS  PubMed  Google Scholar 

  95. McMurray, H. R., Nguyen, D., Westbrook, T. F. & McCance, D. J. Biology of human papillomaviruses. Int. J. Exp. Pathol. 82, 15–33 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. International Collaboration on HIV and Cancer. Highly active antiretroviral therapy and incidence of cancer in human immunodeficiency virus-infected adults. J. Natl Cancer Inst. 92, 1823–1830 (2000).Major international study that assesses the role of HAART in the incidence of AIDS-related malignancies.

  97. Osmond, D. H. et al. Prevalence of Kaposi sarcoma-associated herpesvirus infection in homosexual men at beginning of and during the HIV epidemic. JAMA 287, 221–225 (2002).

    Article  PubMed  Google Scholar 

  98. Dupin, N. et al. The influence of highly active antiretroviral therapy on AIDS-associated Kaposi's sarcoma. Br. J. Dermatol. 140, 875–881 (1999).

    Article  CAS  PubMed  Google Scholar 

  99. Hoffmann, C. et al. Survival of AIDS patients with primary central nervous system lymphoma is dramatically improved by HAART-induced immune recovery. AIDS 15, 2119–2127 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Besson, C. et al. Changes in AIDS-related lymphoma since the era of highly active antiretroviral therapy. Blood 98, 2339–2344 (2001).

    Article  CAS  PubMed  Google Scholar 

  101. Kirk, O. et al. Non-Hodgkin lymphoma in HIV-infected patients in the era of highly active antiretroviral therapy. Blood 98, 3406–3412 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. De Clercq, E. et al. Antiviral agents active against human herpesviruses HHV-6, HHV-7 and HHV-8. Rev. Med. Virol. 11, 381–395 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Spach, D. H. & Colven, R. Resolution of recalcitrant hand warts in an HIV-infected patient treated with potent antiretroviral therapy. J. Am. Acad. Dermatol. 40, 818–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Ellis, L. M. & Fidler, I. J. in The Molecular Basis of Cancer (eds Mendelsohn, J., Howley, P. M., Israel, M. A. & Liotta, L. A.) 173–189 (W. B. Saunders, Philadelphia, 2001).

    Google Scholar 

  105. Zabawski, E. J. Jr & Cockerell, C. J. Topical and intralesional cidofovir: a review of pharmacology and therapeutic effects. J. Am. Acad. Dermatol. 39, 741–745 (1998).

    Article  PubMed  Google Scholar 

  106. Faye, A., Van Den, A. T., Peuchmaur, M., Mathieu-Boue, A. & Vilmer, E. Anti-CD20 monoclonal antibody for post-transplant lymphoproliferative disorders. Lancet 352, 1285 (1998).

    Article  CAS  PubMed  Google Scholar 

  107. Corbellino, M. et al. Long-term remission of Kaposi sarcoma-associated herpesvirus-related multicentric Castleman disease with anti-CD20 monoclonal antibody therapy. Blood 98, 3473–3475 (2001).

    Article  CAS  PubMed  Google Scholar 

  108. Karkkainen, M. J., Makinen, T. & Alitalo, K. Lymphatic endothelium: a new frontier of metastasis research. Nature Cell Biol. 4, E2–E5 (2002).

    Article  CAS  PubMed  Google Scholar 

  109. Du, M. Q. et al. Kaposi sarcoma-associated herpesvirus infects monotypic (IgMλ) but polyclonal naive B cells in Castleman disease and associated lymphoproliferative disorders. Blood 97, 2130–2136 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Munger, K. The molecular biology of cervical cancer. J. Cell Biochem. 23 (Suppl.), 55–60 (1995).

    Article  CAS  Google Scholar 

  111. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).First paper to show that a human oncogenic virus targets the retinoblastoma pathway.

    Article  CAS  PubMed  Google Scholar 

  112. Gage, J. R., Meyers, C. & Wetterstein, F. O. The E7 proteins of the nononcogenic human papillomavirus type 6b (HPV-6b) and the oncogenic HPV-16 differ in retinoblastoma protein binding and other properties. J. Virol. 64, 723–730 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Godden-Kent, D. et al. The cyclin encoded by Kaposi's sarcoma-associated herpesvirus stimulates CDK6 to phosphorylate the retinoblastoma protein and histone H1. J. Virol. 71, 4193–4198 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ellis, M. et al. Degradation of p27(Kip) CDK inhibitor triggered by Kaposi's sarcoma virus cyclin–CDK6 complex. EMBO J. 18, 644–653 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mann, D. J., Child, E. S., Swanton, C., Laman, H. & Jones, N. Modulation of p27(Kip1) levels by the cyclin encoded by Kaposi's sarcoma-associated herpesvirus. EMBO J. 18, 654–663 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Swanton, C. et al. Herpes viral cyclin–CDK6 complexes evade inhibition by CDK inhibitor proteins. Nature 390, 184–187 (1997).

    Article  CAS  PubMed  Google Scholar 

  117. Laman, H., Coverley, D., Krude, T., Laskey, R. & Jones, N. Viral cyclin-cyclin-dependent kinase 6 complexes initiate nuclear DNA replication. Mol. Cell. Biol. 21, 624–635 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brander, C. et al. Impaired CTL recognition of cells latently infected with Kaposi's sarcoma-associated herpes virus. J. Immunol. 165, 2077–2083 (2000).

    Article  CAS  PubMed  Google Scholar 

  119. Wilkinson, J. et al. Identification of Kaposi's sarcoma-associated herpesvirus (KSHV)-specific cytotoxic T-lymphocyte epitopes and evaluation of reconstitution of KSHV-specific responses in human immunodeficiency virus type 1-infected patients receiving highly active antiretroviral therapy. J. Virol. 76, 2634–2640 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Liu, Z. et al. Epstein–Barr virus (EBV)-specific cytotoxic T lymphocytes for the prevention and treatment of EBV-associated post-transplant lymphomas. Recent Results Cancer Res. 159, 123–133 (2002).

    Article  CAS  PubMed  Google Scholar 

  121. Ensoli, B., Barillari, G., Salahuddin, S. Z., Gallo, R. C. & Wong-Staal, F. Tat protein of HIV-1 stimulates growth of cells derived from Kaposi's sarcoma lesions of AIDS patients. Nature 345, 84–86 (1990).

    Article  CAS  PubMed  Google Scholar 

  122. Ensoli, B. et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi's sarcoma. Nature 371, 674–680 (1994).Classic paper on the interplay between HIV-1 Tat and bFGF to induce angiogenesis in an experimental model.

    Article  CAS  PubMed  Google Scholar 

  123. Tovo, P. A. Highly active antiretroviral therapy inhibits cytokine production in HIV-uninfected subjects. AIDS 14, 743–744 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Sgadari, C. et al. HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi's sarcoma. Nature Med. 8, 225–232 (2002).Provocative study on the future use of protease inhibitors to interfere with angiogenesis.

    Article  CAS  PubMed  Google Scholar 

  125. Bower, M. et al. Highly active anti-retroviral therapy (HAART) prolongs time to treatment failure in Kaposi's sarcoma. AIDS 13, 2105–2111 (1999).

    Article  CAS  PubMed  Google Scholar 

  126. Carmeliet, P. Developmental biology: one cell, two fates. Nature 408, 43–45 (2000).

    Article  CAS  PubMed  Google Scholar 

  127. Yamashita, J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92–96 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 20, 4762–4773 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Witmer, A. N. et al. VEGFR-3 in adult angiogenesis. J. Pathol. 195, 490–497 (2001).

    Article  CAS  PubMed  Google Scholar 

  130. Breiteneder-Geleff, S. et al. Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 154, 385–394 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Holzhausen, H. J., Stiller, D. & Sachs, M. [Morphological pathology of classic Kaposi's sarcoma. Ultrastructural studies and reflections on histogenesis]. Zentralbl. Allg. Pathol. 134, 435–447 (1988).

    CAS  PubMed  Google Scholar 

  132. Akula, S. M., Pramod, N. P., Wang, F. Z. & Chandran, B. Integrin α3β1 (CD 49c/29) is a cellular receptor for Kaposi's sacroma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108, 407–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Rivas, C., Thlick, A. E., Parravicini, C., Moore, P. S. & Chang, Y. Kaposi's sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53. J. Virol. 75, 429–438 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We apologize to colleagues whose primary research papers are not cited, due to the restricted number of references. We would like to thank T. Sharp, H. Laman, A. Godfrey and S. Direkze for advice on the text and figures. The authors studies are supported by Cancer Research UK, the Medical Research Council UK, The Wellcome Trust, the Leukaemia Research Fund and GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Boshoff.

Supplementary information

Related links

Related links

DATABASES

Cancer.gov

AIDS-related lymphoma

anal cancer

breast cancer

cervical cancer

colon cancer

Hodgkin's disease

Kaposi's sarcoma

laryngeal carcinoma

multiple myeloma

oesophageal carcinoma

oral carcinoma

penile cancer

primary central nervous system lymphoma

prostate cancer

skin cancer

vulval cancer

vaginal cancer

GenBank

v-cyclin

E2

E6

E7

EBV

herpes simplex virus

HIV-1

HIV-2

HPV16

HPV18

KSHV

LANA1

LMP1

Tat

LocusLink

BCL6

bFGF

CD20

CD31

CD34

CDC6

CDK2

CDK6

CIP/KIP family

cyclin A

cyclin E

E2F

E2F1

E-selectin

IFN-Îł

IL-6

INK4 family

MUM1

MYC

oncostatin-M

ORC1

p107

p130

p21

plasminogen-activator inhibitor-1

RB

syndecan-1

TNF-α

VEGFC

VEGFD

VEGFR2

VEGFR3

Medscape DrugInfo

cidofovir

rituximab

zidovudine

OMIM

epidermodysplasia verruciformis

FURTHER INFORMATION

Centers for Disease Control

Chris Boshoff's lab

National Cancer Institute AIDS-malignancy Branch

Los Alamos National Laboratory, KSHV Database

Glossary

SEPSIS

(SEPTICAEMIA). A systemic infection that is caused by microbial organisms and their toxins in the blood (blood poisoning). Bacteraemia denotes the detecTable presence of bacteria in the bloodstream.

PODOCYTES

('Cells with feet'). Specialized epithelial cells that line the kidney glomerular capillaries. Their foot processes make an incomplete barrier for filtration of substances from the capillary.

EPISOME

A circular piece of DNA (such as a virus) that can replicate independently of the host chromosome (extrachromosomal), or integrate and replicate as part of the chromosome. The term was first used by Jacob and Wollman in 1958 in relation to genetic elements that can either exist independently in a cell or become integrated into the host chromosome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boshoff, C., Weiss, R. Aids-related malignancies. Nat Rev Cancer 2, 373–382 (2002). https://doi.org/10.1038/nrc797

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing