Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Off-tumor target—beneficial site for antiangiogenic cancer therapy?

Abstract

Antiangiogenic cancer therapy is based on agents that target blood vessels of the tumor to inhibit its growth. However, experience from the clinic demonstrates that survival benefits following antiangiogenic therapy do not always correlate with tumor size and growth inhibition. Emerging evidence shows that delivery of antiangiogenic drugs might induce systemic alterations of the vasculature that modulate the function of various tissues and organs. Normalization of tissues and organs by antiangiogenic therapy may be an important mechanism underlying the survival benefits seen in patients with cancer who suffer cancer-associated systemic syndromes. This new concept has been validated in preclinical tumor models, and responses in patients have positively correlated with clinical benefits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Local and systemic impact of angiogenic factors and antiangiogenic drugs.
Figure 2: Potential mechanisms of survival improvements by antiangiogenic drugs.

Similar content being viewed by others

References

  1. Cao, Y. & Langer, R. Optimizing the delivery of cancer drugs that block angiogenesis. Sci. Transl. Med. 2, 15ps13 (2010).

    Article  Google Scholar 

  2. Kerbel, R. S. Improving conventional or low dose metronomic chemotherapy with targeted antiangiogenic drugs. Cancer Res. Treat. 39, 150–159 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Motzer, R. J. et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Kornguth, S. E. Neuronal proteins and paraneoplastic syndromes. N. Engl. J. Med. 321, 1607–1608 (1989).

    Article  CAS  PubMed  Google Scholar 

  6. Tisdale, M. J. Cachexia in cancer patients. Nat. Rev. Cancer 2, 862–871 (2002).

    Article  CAS  PubMed  Google Scholar 

  7. Escudier, B. et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N. Engl. J. Med. 356, 125–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Azizi, M., Chedid, A. & Oudard, S. Home blood-pressure monitoring in patients receiving sunitinib. N. Engl. J. Med. 358, 95–97 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Ebos, J. M., Lee, C. R., Christensen, J. G., Mutsaers, A. J. & Kerbel, R. S. Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy. Proc. Natl Acad. Sci. USA 104, 17069–17074 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamba, T. et al. VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am. J. Physiol. Heart Circ. Physiol. 290, H560–H576 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Xue, Y. et al. Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc. Natl Acad. Sci. USA 105, 18513–18518 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong, A. K. et al. Excessive tumor-elaborated VEGF and its neutralization define a lethal paraneoplastic syndrome. Proc. Natl Acad. Sci. USA 98, 7481–7486 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cao, Y., Zhong, W. & Sun, Y. Improvement of antiangiogenic cancer therapy by understanding the mechanisms of angiogenic factor interplay and drug resistance. Semin. Cancer Biol. 19, 338–343 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Harper, S. J. & Bates, D. O. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat. Rev. Cancer 8, 880–887 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Longo, R. & Gasparini, G. Challenges for patient selection with VEGF inhibitors. Cancer Chemother. Pharmacol. 60, 151–170 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Poon, R. T., Fan, S. T. & Wong, J. Clinical implications of circulating angiogenic factors in cancer patients. J. Clin. Oncol. 19, 1207–1225 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen, M. et al. Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J. Natl Cancer Inst. 86, 356–361 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Krzystek-Korpacka, M. et al. Impact of weight loss on circulating IL-1, IL-6, IL-8, TNF-alpha, VEGF-A, VEGF-C and midkine in gastroesophageal cancer patients. Clin. Biochem. 40, 1353–1360 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ninck, S. et al. Expression profiles of angiogenic growth factors in squamous cell carcinomas of the head and neck. Int. J. Cancer 106, 34–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Hattori, K. et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J. Exp. Med. 193, 1005–1014 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakayama, T., Mutsuga, N. & Tosato, G. Effect of fibroblast growth factor 2 on stromal cell-derived factor 1 production by bone marrow stromal cells and hematopoiesis. J. Natl Cancer Inst. 99, 223–235 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Nathanson, L. & Hall, T. C. Introduction: paraneoplastic syndromes. Semin. Oncol. 24, 265–268 (1997).

    CAS  PubMed  Google Scholar 

  24. Aoyagi, T., Mori, I., Ueyama, Y. & Tamaoki, N. Sinusoidal dilatation of the liver as a paraneoplastic manifestation of renal cell carcinoma. Hum. Pathol. 20, 1193–1197 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Oya, M. Renal cell carcinoma: biological features and rationale for molecular-targeted therapy. Keio J. Med. 58, 1–11 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Shinojima, T. et al. Renal cancer cells lacking hypoxia inducible factor (HIF)-1alpha expression maintain vascular endothelial growth factor expression through HIF-2alpha. Carcinogenesis 28, 529–536 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature 414, 550–554 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Maxwell, P. H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271–275 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Maranchie, J. K. et al. The contribution of VHL substrate binding and HIF1-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1, 247–255 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Tenan, M. et al. Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J. Exp. Med. 191, 1789–1798 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. O'Reilly, M. S. et al. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Theou-Anton, N., Faivre, S., Dreyer, C. & Raymond, E. Benefit-risk assessment of sunitinib in gastrointestinal stromal tumours and renal cancer. Drug Saf. 32, 717–734 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Dahlberg, S. E., Sandler, A. B., Brahmer, J. R., Schiller, J. H. & Johnson, D. H. Clinical course of advanced non-small-cell lung cancer patients experiencing hypertension during treatment with bevacizumab in combination with carboplatin and paclitaxel on ECOG 4599. J. Clin. Oncol. 28, 949–954 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. van Heeckeren, W. J., Ortiz, J., Cooney, M. M. & Remick, S. C. Hypertension, proteinuria, and antagonism of vascular endothelial growth factor signaling: clinical toxicity, therapeutic target, or novel biomarker? J. Clin. Oncol. 25, 2993–2995 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Scartozzi, M. et al. Arterial hypertension correlates with clinical outcome in colorectal cancer patients treated with first-line bevacizumab. Ann. Oncol. 20, 227–230 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Ravaud, A. & Sire, M. Arterial hypertension and clinical benefit of sunitinib, sorafenib and bevacizumab in first and second-line treatment of metastatic renal cell cancer. Ann. Oncol. 20, 966–967 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Wick, A. et al. Arterial hypertension and bevacizumab treatment in glioblastoma: no correlation with clinical outcome. J. Neurooncol. 97, 157–158 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Kappers, M. H., van Esch, J. H., Sleijfer, S., Danser, A. H. & van den Meiracker, A. H. Cardiovascular and renal toxicity during angiogenesis inhibition: clinical and mechanistic aspects. J. Hypertens. 27, 2297–2309 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Schneider, B. P. et al. Association of vascular endothelial growth factor and vascular endothelial growth factor receptor-2 genetic polymorphisms with outcome in a trial of paclitaxel compared with paclitaxel plus bevacizumab in advanced breast cancer: ECOG 2100. J. Clin. Oncol. 26, 4672–4678 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Desai, J. et al. Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann. Intern. Med. 145, 660–664 (2006).

    Article  PubMed  Google Scholar 

  41. Rini, B. I. et al. Hypothyroidism in patients with metastatic renal cell carcinoma treated with sunitinib. J. Natl Cancer Inst. 99, 81–83 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Torino, F., Corsello, S. M., Longo, R., Barnabei, A. & Gasparini, G. Hypothyroidism related to tyrosine kinase inhibitors: an emerging toxic effect of targeted therapy. Nat. Rev. Clin. Oncol. 6, 219–228 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Steeghs, N. et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin. Cancer Res. 14, 3470–3476 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Saif, M. W., Longo, W. L. & Israel, G. Correlation between rash and a positive drug response associated with bevacizumab in a patient with advanced colorectal cancer. Clin. Colorectal Cancer 7, 144–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Vincenzi, B. et al. Early skin toxicity as a predictive factor for tumor control in hepatocellular carcinoma patients treated with sorafenib. Oncologist 15, 85–92 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

    Article  CAS  PubMed  Google Scholar 

  47. Mancuso, M. R. et al. Rapid vascular regrowth in tumors after reversal of VEGF inhibition. J. Clin. Invest. 116, 2610–2621 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hedlund, E. M., Hosaka, K., Zhong, Z., Cao, R. & Cao, Y. Malignant cell-derived PlGF promotes normalization and remodeling of the tumor vasculature. Proc. Natl Acad. Sci. USA 106, 17505–17510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ledford, H. Drug markers questioned. Nature 452, 510–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186 (1971).

    Article  CAS  PubMed  Google Scholar 

  51. Foulkes, W. D., Reis-Filho, J. S. & Narod, S. A. Tumor size and survival in breast cancer—a reappraisal. Nat. Rev. Clin. Oncol. 7, 348–353 (2010).

    Article  CAS  PubMed  Google Scholar 

  52. Longo, R. et al. Anti-angiogenic therapy: rationale, challenges and clinical studies. Angiogenesis 5, 237–256 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author's laboratory is supported by research grants from the Swedish Research Council, the Swedish Cancer Foundation, the Karolinska Institute Foundation, the Karolinska Institute Distinguished Professor Award, the European Union Integrated Project of Metoxia (project number 222741), and the European Research Council (ERC) Advanced Grant ANGIOFAT (project number 250021).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

Y. Cao is on the Board of Directors at Clanotech.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, Y. Off-tumor target—beneficial site for antiangiogenic cancer therapy?. Nat Rev Clin Oncol 7, 604–608 (2010). https://doi.org/10.1038/nrclinonc.2010.118

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2010.118

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer