Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know

Abstract

Cancer immunotherapy using the adoptive transfer of autologous tumor-infiltrating lymphocytes results in objective cancer regression in 49–72% of patients with metastatic melanoma. In a pilot trial combining cell transfer with a maximum lymphodepleting regimen, complete durable responses were seen in 40% of patients, with complete responses ongoing beyond 3 to 7 years. Current approaches to cell transfer therapy using autologous cells genetically engineered to express conventional or chimeric T-cell receptors have mediated cancer regression in patients with metastatic melanoma, synovial sarcoma, neuroblastoma and refractory lymphoma. Adoptive cell transfer immunotherapy is a rapidly developing new approach to the therapy of metastatic cancer in humans. This Review will emphasize the current available applications of cell transfer immunotherapy for patients with cancer.

Key Points

  • Adoptive cell transfer immunotherapy can mediate the objective regression of metastatic melanoma in 49–72% of patients

  • Complete durable regressions using cell transfer immunotherapy have been seen in up to 40% of patients and it is likely curative in many patients

  • The high incidence of durable complete regressions in patients with melanoma receiving cell transfer immunotherapy is similar, independent of the patient's prior treatment

  • Cell transfer immunotherapy can be extended to additional cancer types by using autologous lymphocytes that are genetically transduced to express antitumor T-cell receptors (TCRs) or chimeric antigen receptors (CARs)

  • Using these TCR or CAR gene transduced cells, objective regressions have been seen in patients with synovial cell sarcoma, lymphoma, and melanoma

  • The opportunity to genetically modify autologous lymphocytes with a variety of genes that can improve their antitumor function is opening new possibilities for developing effective cancer treatments

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Adoptive cell transfer immunotherapy using either autologous TILs obtained from resected tumors or using peripheral lymphocytes genetically transduced with retroviruses to express antitumor T-cell receptors.
Figure 2: Preparative regimens for cell transfer.
Figure 3: Survival of patients with metastatic melanoma treated with autologous tumor-infiltrating lymphocytes.
Figure 4: Examples of complete durable responses in patients receiving adoptive cell therapy.3
Figure 5: Expression of three cancer–testes antigens (NY-ESO-1, MAGE-A1, MAGE-A3) in a variety of cancer types.
Figure 6: Examples of cancer regression in patients with synovial cell sarcoma treated with autologous T cells transduced with the gene encoding an anti-NY-ESO-1 T-cell receptor.

Similar content being viewed by others

References

  1. Rosenberg, S. A., Robbins, P. F. & Restifo, N. P. Cancer immunotherapy in Cancer: Principles & Practice of Oncology (Eds DeVita, V. T., Lawrence, T. S. & Rosenberg, S. A.) 332–344 (Lippincott Williams & Wilkins, Philadelphia, 2011).

  2. Slingluff, C. L., Flaherty, K., Rosenberg, S. A. & Read, P. W. Cutaneous Melanoma in Cancer: Principles & Practice of Oncology (Eds DeVita, V. T., Lawrence, T. S. & Rosenberg, S. A.) 1643–1691 (Lippincott Williams & Wilkins, Philadelphia, 2011).

  3. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

    Article  CAS  Google Scholar 

  4. Landsteiner, K. & Chase, M. W. Experiments on transfer of cutaneous sensitivity to simple compounds. Proc. Soc. Exp. Biol. Med. 49, 688–690 (1942).

    Article  CAS  Google Scholar 

  5. Gross, L. Intradermal immunization of C3H mice against a sarcoma that originated in an animal of the same line. Cancer Res. 3, 326–333 (1943).

    Google Scholar 

  6. Morgan, D. A., Ruscetti, F. W. & Gallo, R. G. Selective in vitro growth of T-lymphocytes from normal bone marrow. Science 193, 1007–1008 (1976).

    Article  CAS  Google Scholar 

  7. Taniguchi, T., Matsui, H. & Fujita, T. Structure and expression of a cloned cDNA for human interleukin-2. Nature 302, 305–307 (1983).

    Article  CAS  Google Scholar 

  8. Rosenberg, S. A. et al. Biological activity of recombinant human interleukin-2 produced in E. coli Science 223, 1412–1414 (1984).

    Article  CAS  Google Scholar 

  9. Rosenberg, S. A. et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant interleukin-2 to patients with metastatic cancer. N. Engl. J. Med. 313, 1485–1492 (1985).

    Article  CAS  Google Scholar 

  10. Smith, F. O. et al. Treatment of metastatic melanoma using interleukin-2 alone or in conjunction with vaccines. Clin. Cancer Res. 14, 5610–5618 (2008).

    Article  CAS  Google Scholar 

  11. Hodi, F. S. et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 363, 711–723 (2010).

    Article  CAS  Google Scholar 

  12. van der Bruggen, P. et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643–1647 (1991).

    Article  CAS  Google Scholar 

  13. Rosenberg, S. A. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity 10, 281–287 (1999).

    Article  CAS  Google Scholar 

  14. Robbins, P. F., Wang, R.-F. & Rosenberg, S. A. Tumor antigens recognized by cytotoxic lymphocytes in Cytotoxic Cells: Basic Mechanisms and Medical Applications (Eds Sitkovsky, M. V. & Henkart, P. A.) 363–383 (J. B. Lippincott, Philadelphia, 2000).

  15. Kantoff, P. W. et al. Sipuleucel-T immunotherapy for castration-resistant prostrate cancer. N. Engl. J. Med. 363, 411–422 (2010).

    Article  CAS  Google Scholar 

  16. Rosenberg, S. A. et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J. Immunol. 175, 6169–6176 (2005).

    Article  CAS  Google Scholar 

  17. Dudley, M. E. et al. Cancer regression and autoimmunity in patients after clonal repopulation with anti-tumor lymphocytes. Science 298, 850–854 (2002).

    Article  CAS  Google Scholar 

  18. Dudley, M. E. et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J. Clin. Oncol. 26, 5233–5239 (2008).

    Article  CAS  Google Scholar 

  19. Rosenberg, S. A. & Dudley, M. E. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr. Opin. Immunol. 21, 233–240 (2009).

    Article  CAS  Google Scholar 

  20. Robbins, P. F. et al. Tumor regression in patients with metastatic synovial sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J. Clin. Oncol. 29, 917–924 (2011).

    Article  Google Scholar 

  21. Kochenderfer, J. N. et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 116, 4099–4102 (2010).

    Article  CAS  Google Scholar 

  22. Parkhurst, M. R. et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol. Ther. 19, 620–626 (2011).

    Article  CAS  Google Scholar 

  23. Pule, M. A. et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat. Med. 14, 1264–1270 (2008).

    Article  CAS  Google Scholar 

  24. Straathof, K. et al. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus-specific T lymphocytes. Blood 105, 1898–1904 (2005).

    Article  CAS  Google Scholar 

  25. Rooney, C. M. et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein-Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 92, 1549–1555 (1998).

    CAS  Google Scholar 

  26. Rosenberg, S. A., Spiess, P. & Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233, 1318–1321 (1986).

    Article  CAS  Google Scholar 

  27. Muul, L. M., Spiess, P. J., Director, E. P. & Rosenberg, S. A. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J. Immunol. 138, 989–995 (1987).

    CAS  PubMed  Google Scholar 

  28. Rosenberg, S. A. et al. Use of tumor infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. Preliminary report. N. Engl. J. Med. 319, 1676–1680 (1988).

    Article  CAS  Google Scholar 

  29. Rosenberg, S. A. et al. Treatment of patients with metastatic melanoma using autologous tumor-infiltrating lymphocytes and interleukin-2. J. Natl Cancer Inst. 86, 1159–1166 (1994).

    Article  CAS  Google Scholar 

  30. Wrzesiniski, C. et al. Increased intensity lymphodepletion enhances tumor treatment efficacy of adoptively transferred tumor-specific T cells. J. Immunother. 33, 1–7 (2010).

    Article  Google Scholar 

  31. Chapman, P. B. et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N. Engl. J. Med. 364, 2507–2516 (2011).

    Article  CAS  Google Scholar 

  32. Rosenberg, S. A. et al. Recombinant fowlpox viruses encoding the anchor-modified gp100 melanoma antigen can generate antitumor immune responses in patients with metastatic melanoma. Clin. Cancer Res. 9, 2973–2980 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gattinoni, L., Powell, D. J., Rosenberg, S. A. & Restifo, N. P. Adoptive immunotherapy for cancer: building on success. Nat. Rev. Immunol. 6, 383–393 (2006).

    Article  CAS  Google Scholar 

  34. Paulos, C. M. et al. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Invest. 117, 2197–2204 (2007).

    Article  CAS  Google Scholar 

  35. Zhou, J., Shen, X., Hodes, R. J., Rosenberg, S. A. & Robbins, P. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J. Immunol. 175, 7046–7052 (2005).

    Article  CAS  Google Scholar 

  36. Huang, J. et al. Modulation by IL-2 of CD70 and CD27 expression on CD8+ T cells: importance for the therapeutic effectiveness of cell transfer immunotherapy. J. Immunol. 176, 7726–7735 (2006).

    Article  CAS  Google Scholar 

  37. Robbins, P. F. et al. Cutting edge: Persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J. Immunol. 173, 7125–7130 (2004).

    Article  CAS  Google Scholar 

  38. Tran, K. Q. et al. Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J. Immunother. 31, 742–751 (2008).

    Article  CAS  Google Scholar 

  39. Besser, M. J. et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 16, 2646–2655 (2010).

    Article  CAS  Google Scholar 

  40. Dudley, M. E. et al. CD8+ enriched “young” tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin. Cancer Res. 16, 6122–6131 (2010).

    Article  CAS  Google Scholar 

  41. Liu, K. & Rosenberg, S. A. Transduction of an interleukin-2 gene into human melanoma-reactive lymphocytes results in their continued growth in the absence of exogenous IL-2 and maintenance of specific antitumor activity. J. Immunol. 167, 6356–6365 (2001).

    Article  CAS  Google Scholar 

  42. Hsu, C. et al. Cytokine-independent growth and clonal expansion of a primary human CD8+ T-cell clone following retroviral transduction with the IL-15 gene. Blood 109, 5168–5177 (2007).

    Article  CAS  Google Scholar 

  43. Hinrichs, C. S. et al. Human effector CD8+ T cells derived from naive rather than memory subsets possess superior traits for adoptive immunotherapy. Blood 117, 808–814 (2011).

    Article  CAS  Google Scholar 

  44. Morgan, R. A., Dudley, M. E. & Rosenberg, S. A. Adoptive cell therapy: Genetic modification to redirect effector cell specificity. Cancer J. 16, 336–341 (2010).

    Article  CAS  Google Scholar 

  45. Chinnasamy, N. et al. A TCR targeting the HLA-A*0201–restricted epitope of MAGE-A3 recognizes multiple epitopes of the MAGE-A antigen superfamily in several types of cancer. J. Immunol. 186, 685–696 (2011).

    Article  CAS  Google Scholar 

  46. Robbins, P. F. et al. Single and dual amino acid substitutions in TCR CDRs can enhance antigen-specific T cell functions. J. Immunol. 180, 6116–6131 (2008).

    Article  CAS  Google Scholar 

  47. Cohen, C. J., Zhao, Y., Zheng, Z., Rosenberg, S. A. & Morgan, R. A. Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 66, 8878–8886 (2006).

    Article  CAS  Google Scholar 

  48. Cohen, C. J. et al. Enhanced antitumor activity of T cells engineered to express T-cell receptors with a second disulfide bond. Cancer Res. 67, 3898–3903 (2007).

    Article  CAS  Google Scholar 

  49. Morgan, R. A. et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314, 126–129 (2006).

    Article  CAS  Google Scholar 

  50. Johnson, L. A. et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood 114, 535–546 (2009).

    Article  CAS  Google Scholar 

  51. Scanlan, M. J., Gure, A. O., Jungbluth, A. A., Old, L. J. & Chen, Y. T. Cancer/testis antigens: an expanding family of targets for cancer immunotherapy. Immunol. Rev. 188, 22–32 (2002).

    Article  CAS  Google Scholar 

  52. Simpson, A. J., Caballero, O. L., Jungbluth, A., Chen, Y. T. & Old, L. J. Cancer/testis antigens, gametogenesis and cancer. Nat. Rev. Cancer 5, 625 (2005).

    Article  Google Scholar 

  53. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  CAS  Google Scholar 

  54. Lamers, C. H. J. et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J. Clin. Oncol. 24, e20–e22 (2006).

    Article  Google Scholar 

  55. Chinnasamy, D. et al. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice. J. Clin. Invest. 120, 3953–3968 (2010).

    Article  CAS  Google Scholar 

  56. Brentjens, R., Yeh, R., Bernal, Y., Riviere, I. & Sadelain, M. Treatment of chronic lymphotic leukemia with genetically targeted autologous T cells: Case report of an unforeseen adverse event in a phase 1 clinical trial. Mol. Ther. 18, 666–668 (2010).

    Article  CAS  Google Scholar 

  57. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  Google Scholar 

  58. Bendle, G. M. et al. Lethal graft-versus-host disease in mouse models of T cell receptor gene therapy. Nat. Med. 16, 565–570 (2010).

    Article  CAS  Google Scholar 

  59. Rosenberg, S. A. Of mice, not men: no evidence for graft-versus-host disease in humans receiving T-cell receptor-transduced autologous T cells. Mol. Ther. 18, 1744–1755 (2010).

    Article  CAS  Google Scholar 

  60. Middleton, M. R. et al. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. Clin. Oncol. 18, 158–166 (2000).

    Article  CAS  Google Scholar 

  61. Atkins, M. B. et al. High-dose recombinant interleukin-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J. Clin. Oncol. 17, 2105–2116 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C. P. Vega, University of California, Irvine, CA, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, S. Cell transfer immunotherapy for metastatic solid cancer—what clinicians need to know. Nat Rev Clin Oncol 8, 577–585 (2011). https://doi.org/10.1038/nrclinonc.2011.116

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrclinonc.2011.116

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing